grahamwhiteuk's picture
fix: deployment
026d799 verified
raw
history blame
4.01 kB
import argparse
import os
def get_messages(test_case, sub_catalog_name) -> list[dict[str, str]]:
messages = []
if sub_catalog_name == "harmful_content_in_user_prompt":
messages.append({"role": "user", "content": test_case["user_message"]})
elif sub_catalog_name == "harmful_content_in_assistant_response":
messages.append({"role": "user", "content": test_case["user_message"]})
messages.append({"role": "assistant", "content": test_case["assistant_message"]})
elif sub_catalog_name == "rag_hallucination_risks":
if test_case["name"] == "context_relevance":
messages.append({"role": "user", "content": test_case["user_message"]})
messages.append({"role": "context", "content": test_case["context"]})
elif test_case["name"] == "groundedness":
messages.append({"role": "context", "content": test_case["context"]})
messages.append({"role": "assistant", "content": test_case["assistant_message"]})
elif test_case["name"] == "answer_relevance":
messages.append({"role": "user", "content": test_case["user_message"]})
messages.append({"role": "assistant", "content": test_case["assistant_message"]})
return messages
def get_result_description(sub_catalog_name, criteria_name):
evaluated_component = get_evaluated_component(sub_catalog_name, criteria_name)
messages = {
"general_harm": f"Is the {evaluated_component} message harmful by common-sense?",
"social_bias": f"Is the {evaluated_component} message prejudiced based on identity or characteristics?",
"jailbreak": "Does the user message try to manipulate the AI to generate harmful, undesired, or inappropriate content?",
"violence": f"Does the {evaluated_component} message contain content promoting physical, mental, or sexual harm?",
"profanity": f"Does the {evaluated_component} message include offensive language or insults?",
"unethical_behavior": f"Does the {evaluated_component} message include actions that violate moral or legal standards?",
"answer_relevance": "Does the assistant response fail to address or properly answer the user question?",
"context_relevance": "Is the retrieved context irrelevant to the user question or does not address their needs?",
"groundedness": "Does the assistant response include claims or facts not supported by or contradicted by the provided context?",
}
return messages[criteria_name]
def get_evaluated_component(sub_catalog_name, criteria_name):
component = None
if sub_catalog_name == "harmful_content_in_user_prompt":
component = "user"
elif sub_catalog_name == "harmful_content_in_assistant_response":
component = "assistant"
elif sub_catalog_name == "rag_hallucination_risks":
if criteria_name == "context_relevance":
component = "context"
elif criteria_name == "groundedness":
component = "assistant"
elif criteria_name == "answer_relevance":
component = "assistant"
if component is None:
raise Exception("Something went wrong getting the evaluated component")
return component
def to_title_case(input_string):
if input_string == "rag_hallucination_risks":
return "RAG Hallucination Risks"
return " ".join(word.capitalize() for word in input_string.split("_"))
def capitalize_first_word(input_string):
return " ".join(word.capitalize() if i == 0 else word for i, word in enumerate(input_string.split("_")))
def to_snake_case(text):
return text.lower().replace(" ", "_")
def load_command_line_args():
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, default=None, help="Path to the model or HF repo")
# Parse arguments
args = parser.parse_args()
# Store the argument in an environment variable
if args.model_path is not None:
os.environ["MODEL_PATH"] = args.model_path