Martín Santillán Cooper commited on
Commit
2cb730a
1 Parent(s): d33d1ff

Log model runtime in seconds

Browse files
Files changed (1) hide show
  1. model.py +12 -17
model.py CHANGED
@@ -3,13 +3,20 @@ from time import time, sleep
3
  from logger import logger
4
  import math
5
 
6
-
7
-
8
-
9
  safe_token = "No"
10
  unsafe_token = "Yes"
11
  nlogprobs = 5
12
 
 
 
 
 
 
 
 
 
 
 
13
  def parse_output(output):
14
  label, prob = None, None
15
 
@@ -46,17 +53,6 @@ def get_probablities(logprobs):
46
 
47
  return probabilities
48
 
49
-
50
- mock_model_call = os.getenv('MOCK_MODEL_CALL') == 'true'
51
- if not mock_model_call:
52
- import torch
53
- from vllm import LLM, SamplingParams
54
- from transformers import AutoTokenizer
55
- model_path = os.getenv('MODEL_PATH')#"granite-guardian-3b-pipecleaner-r241024a"
56
- sampling_params = SamplingParams(temperature=0.0, logprobs=nlogprobs)
57
- model = LLM(model=model_path, tensor_parallel_size=1)
58
- tokenizer = AutoTokenizer.from_pretrained(model_path)
59
-
60
  def generate_text(prompt):
61
  logger.debug(f'Prompts content is: \n{prompt["content"]}')
62
  mock_model_call = os.getenv('MOCK_MODEL_CALL') == 'true'
@@ -72,8 +68,7 @@ def generate_text(prompt):
72
  with torch.no_grad():
73
  output = model.generate(tokenized_chat, sampling_params, use_tqdm=False)
74
 
75
-
76
- predicted_label = output[0].outputs[0].text.strip()
77
 
78
  label, prob_of_risk = parse_output(output[0])
79
 
@@ -82,6 +77,6 @@ def generate_text(prompt):
82
 
83
  end = time()
84
  total = end - start
85
- logger.debug(f'it took {round(total/60, 2)} mins')
86
 
87
  return {'assessment': label, 'certainty': prob_of_risk}
 
3
  from logger import logger
4
  import math
5
 
 
 
 
6
  safe_token = "No"
7
  unsafe_token = "Yes"
8
  nlogprobs = 5
9
 
10
+ mock_model_call = os.getenv('MOCK_MODEL_CALL') == 'true'
11
+ if not mock_model_call:
12
+ import torch
13
+ from vllm import LLM, SamplingParams
14
+ from transformers import AutoTokenizer
15
+ model_path = os.getenv('MODEL_PATH')#"granite-guardian-3b-pipecleaner-r241024a"
16
+ sampling_params = SamplingParams(temperature=0.0, logprobs=nlogprobs)
17
+ model = LLM(model=model_path, tensor_parallel_size=1)
18
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
19
+
20
  def parse_output(output):
21
  label, prob = None, None
22
 
 
53
 
54
  return probabilities
55
 
 
 
 
 
 
 
 
 
 
 
 
56
  def generate_text(prompt):
57
  logger.debug(f'Prompts content is: \n{prompt["content"]}')
58
  mock_model_call = os.getenv('MOCK_MODEL_CALL') == 'true'
 
68
  with torch.no_grad():
69
  output = model.generate(tokenized_chat, sampling_params, use_tqdm=False)
70
 
71
+ # predicted_label = output[0].outputs[0].text.strip()
 
72
 
73
  label, prob_of_risk = parse_output(output[0])
74
 
 
77
 
78
  end = time()
79
  total = end - start
80
+ logger.debug(f'The evaluation took {total} secs')
81
 
82
  return {'assessment': label, 'certainty': prob_of_risk}