import torch from torch.nn.functional import softmax from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModel import os from time import time from logger import logger use_conda = os.getenv('USE_CONDA', "false") == "true" device = "cuda" model_path = os.getenv('MODEL_PATH')#"granite-guardian-3b-pipecleaner-r241024a" logger.info(f'Model path is "{model_path}"') tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map=device if use_conda else None ) def generate_text(prompt): logger.debug('Starting evaluation...') logger.debug(f'Prompts content is: \n{prompt["content"]}') start = time() tokenized_chat = tokenizer.apply_chat_template( [prompt], tokenize=True, add_generation_prompt=True, return_tensors="pt")#.to(device) if use_conda: tokenized_chat = tokenized_chat.to(device) with torch.no_grad(): logits = model(tokenized_chat).logits gen_outputs = model.generate(tokenized_chat, max_new_tokens=128) generated_text = tokenizer.decode(gen_outputs[0]) logger.debug(f'Model generated text: \n{generated_text}') vocab = tokenizer.get_vocab() selected_logits = logits[0, -1, [vocab['No'], vocab['Yes']]] probabilities = softmax(selected_logits, dim=0) prob = probabilities[1].item() logger.debug(f'Certainty is: {prob} from probabilities {probabilities}') certainty = prob assessment = 'Yes' if certainty > 0.5 else 'No' certainty = 1 - certainty if certainty < 0.5 else certainty certainty = f'{round(certainty,3)}' end = time() total = end - start logger.debug(f'it took {round(total/60, 2)} mins') return {'assessment': assessment, 'certainty': certainty}