File size: 7,362 Bytes
5af1287 200f6e3 e3f7268 200f6e3 5af1287 ef84153 842ee21 5af1287 842ee21 5af1287 200f6e3 5af1287 842ee21 5af1287 842ee21 5af1287 77e0567 5af1287 2b979cd 5af1287 e3f7268 2b979cd 5af1287 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
######### pull files
import os
from huggingface_hub import hf_hub_download
config_path=hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-100M-sen1floods11", filename="sen1floods11_Prithvi_100M.py", token=os.environ.get("token"))
ckpt=hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-100M-sen1floods11", filename='sen1floods11_Prithvi_100M.pth', token=os.environ.get("token"))
##########
import argparse
from mmcv import Config
from mmseg.models import build_segmentor
from mmseg.datasets.pipelines import Compose, LoadImageFromFile
import rasterio
import torch
from mmseg.apis import init_segmentor
from mmcv.parallel import collate, scatter
import numpy as np
import glob
import os
import time
import numpy as np
import gradio as gr
from functools import partial
import pdb
import matplotlib.pyplot as plt
from skimage import exposure
def stretch_rgb(rgb):
ls_pct=1
pLow, pHigh = np.percentile(rgb[~np.isnan(rgb)], (ls_pct,100-ls_pct))
img_rescale = exposure.rescale_intensity(rgb, in_range=(pLow,pHigh))
return img_rescale
def open_tiff(fname):
with rasterio.open(fname, "r") as src:
data = src.read()
return data
def write_tiff(img_wrt, filename, metadata):
"""
It writes a raster image to file.
:param img_wrt: numpy array containing the data (can be 2D for single band or 3D for multiple bands)
:param filename: file path to the output file
:param metadata: metadata to use to write the raster to disk
:return:
"""
with rasterio.open(filename, "w", **metadata) as dest:
if len(img_wrt.shape) == 2:
img_wrt = img_wrt[None]
for i in range(img_wrt.shape[0]):
dest.write(img_wrt[i, :, :], i + 1)
return filename
def get_meta(fname):
with rasterio.open(fname, "r") as src:
meta = src.meta
return meta
def preprocess_example(example_list):
example_list = [os.path.join(os.path.abspath(''), x) for x in example_list]
return example_list
def inference_segmentor(model, imgs, custom_test_pipeline=None):
"""Inference image(s) with the segmentor.
Args:
model (nn.Module): The loaded segmentor.
imgs (str/ndarray or list[str/ndarray]): Either image files or loaded
images.
Returns:
(list[Tensor]): The segmentation result.
"""
cfg = model.cfg
device = next(model.parameters()).device # model device
# build the data pipeline
test_pipeline = [LoadImageFromFile()] + cfg.data.test.pipeline[1:] if custom_test_pipeline == None else custom_test_pipeline
test_pipeline = Compose(test_pipeline)
# prepare data
data = []
imgs = imgs if isinstance(imgs, list) else [imgs]
for img in imgs:
img_data = {'img_info': {'filename': img}}
img_data = test_pipeline(img_data)
data.append(img_data)
# print(data.shape)
data = collate(data, samples_per_gpu=len(imgs))
if next(model.parameters()).is_cuda:
# data = collate(data, samples_per_gpu=len(imgs))
# scatter to specified GPU
data = scatter(data, [device])[0]
else:
# img_metas = scatter(data['img_metas'],'cpu')
# data['img_metas'] = [i.data[0] for i in data['img_metas']]
img_metas = data['img_metas'].data[0]
img = data['img']
data = {'img': img, 'img_metas':img_metas}
with torch.no_grad():
result = model(return_loss=False, rescale=True, **data)
return result
def inference_on_file(target_image, model, custom_test_pipeline):
target_image = target_image.name
time_taken=-1
st = time.time()
print('Running inference...')
result = inference_segmentor(model, target_image, custom_test_pipeline)
print("Output has shape: " + str(result[0].shape))
##### prep outputs
mask = open_tiff(target_image)
rgb = stretch_rgb((mask[[3, 2, 1], :, :].transpose((1,2,0))/10000*255).astype(np.uint8))
meta = get_meta(target_image)
mask = np.where(mask == meta['nodata'], 1, 0)
mask = np.max(mask, axis=0)[None]
rgb = np.where(mask.transpose((1,2,0)) == 1, 0, rgb)
rgb = np.where(rgb < 0, 0, rgb)
rgb = np.where(rgb > 255, 255, rgb)
prediction = np.where(mask == 1, 0, result[0]*255)
et = time.time()
time_taken = np.round(et - st, 1)
print(f'Inference completed in {str(time_taken)} seconds')
return rgb, prediction[0]
def process_test_pipeline(custom_test_pipeline, bands=None):
# change extracted bands if necessary
if bands is not None:
extract_index = [i for i, x in enumerate(custom_test_pipeline) if x['type'] == 'BandsExtract' ]
if len(extract_index) > 0:
custom_test_pipeline[extract_index[0]]['bands'] = eval(bands)
collect_index = [i for i, x in enumerate(custom_test_pipeline) if x['type'].find('Collect') > -1]
# adapt collected keys if necessary
if len(collect_index) > 0:
keys = ['img_info', 'filename', 'ori_filename', 'img', 'img_shape', 'ori_shape', 'pad_shape', 'scale_factor', 'img_norm_cfg']
custom_test_pipeline[collect_index[0]]['meta_keys'] = keys
return custom_test_pipeline
config = Config.fromfile(config_path)
config.model.backbone.pretrained=None
model = init_segmentor(config, ckpt, device='cpu')
custom_test_pipeline=process_test_pipeline(model.cfg.data.test.pipeline, None)
func = partial(inference_on_file, model=model, custom_test_pipeline=custom_test_pipeline)
with gr.Blocks() as demo:
gr.Markdown(value='# Prithvi sen1floods11')
gr.Markdown(value='''Prithvi is a first-of-its-kind temporal Vision transformer pretrained by the IBM and NASA team on continental US Harmonised Landsat Sentinel 2 (HLS) data. This demo showcases how the model was finetuned to detect water at a higher resolution than it was trained on (i.e. 10m versus 30m) using Sentinel 2 imagery from on the [sen1floods11 dataset](https://github.com/cloudtostreet/Sen1Floods11). More detailes can be found [here](https://huggingface.co/ibm-nasa-geospatial/Prithvi-100M-sen1floods11).\n
The user needs to provide a Sentinel 2 image with all the 12 bands (in the usual Sentinel 2) order in reflectance units multiplied by 10,000 (e.g. to save on space), with the code that is going to pull up Blue, Green, Red, Narrow NIR, SWIR, SWIR 2.
''')
with gr.Row():
with gr.Column():
inp = gr.File()
btn = gr.Button("Submit")
with gr.Row():
gr.Markdown(value='### Input RGB')
gr.Markdown(value='### Model prediction (Black: Land; White: Water)')
with gr.Row():
out1=gr.Image(image_mode='RGB')
out2 = gr.Image(image_mode='L')
btn.click(fn=func, inputs=inp, outputs=[out1, out2])
with gr.Row():
gr.Examples(examples=["India_900498_S2Hand.tif",
"Spain_7370579_S2Hand.tif",
"USA_430764_S2Hand.tif"],
inputs=inp,
outputs=[out1, out2],
preprocess=preprocess_example,
fn=func,
cache_examples=True,
)
demo.launch() |