|
import gradio as gr |
|
import torch |
|
from diffusers import StableDiffusionXLPipeline, AutoencoderKL |
|
from huggingface_hub import hf_hub_download |
|
from safetensors.torch import load_file |
|
from share_btn import community_icon_html, loading_icon_html, share_js |
|
from cog_sdxl_dataset_and_utils import TokenEmbeddingsHandler |
|
import lora |
|
import copy |
|
import json |
|
import gc |
|
import random |
|
with open("sdxl_loras.json", "r") as file: |
|
data = json.load(file) |
|
sdxl_loras_raw = [ |
|
{ |
|
"image": item["image"], |
|
"title": item["title"], |
|
"repo": item["repo"], |
|
"trigger_word": item["trigger_word"], |
|
"weights": item["weights"], |
|
"is_compatible": item["is_compatible"], |
|
"is_pivotal": item.get("is_pivotal", False), |
|
"text_embedding_weights": item.get("text_embedding_weights", None), |
|
"likes": item.get("likes", 0), |
|
"downloads": item.get("downloads", 0), |
|
"is_nc": item.get("is_nc", False) |
|
} |
|
for item in data |
|
] |
|
|
|
device = "cuda" |
|
|
|
state_dicts = {} |
|
|
|
for item in sdxl_loras_raw: |
|
saved_name = hf_hub_download(item["repo"], item["weights"]) |
|
|
|
if not saved_name.endswith('.safetensors'): |
|
state_dict = torch.load(saved_name) |
|
else: |
|
state_dict = load_file(saved_name) |
|
|
|
state_dicts[item["repo"]] = { |
|
"saved_name": saved_name, |
|
"state_dict": state_dict |
|
} |
|
|
|
vae = AutoencoderKL.from_pretrained( |
|
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16 |
|
) |
|
pipe = StableDiffusionXLPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-xl-base-1.0", |
|
vae=vae, |
|
torch_dtype=torch.float16, |
|
) |
|
original_pipe = copy.deepcopy(pipe) |
|
pipe.to(device) |
|
|
|
last_lora = "" |
|
last_merged = False |
|
last_fused = False |
|
def update_selection(selected_state: gr.SelectData, sdxl_loras): |
|
lora_repo = sdxl_loras[selected_state.index]["repo"] |
|
instance_prompt = sdxl_loras[selected_state.index]["trigger_word"] |
|
new_placeholder = "Type a prompt. This LoRA applies for all prompts, no need for a trigger word" if instance_prompt == "" else "Type a prompt to use your selected LoRA" |
|
weight_name = sdxl_loras[selected_state.index]["weights"] |
|
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨ {'(non-commercial LoRA, `cc-by-nc`)' if sdxl_loras[selected_state.index]['is_nc'] else '' }" |
|
is_compatible = sdxl_loras[selected_state.index]["is_compatible"] |
|
is_pivotal = sdxl_loras[selected_state.index]["is_pivotal"] |
|
|
|
use_with_diffusers = f''' |
|
## Using [`{lora_repo}`](https://huggingface.co/{lora_repo}) |
|
|
|
## Use it with diffusers: |
|
''' |
|
if is_compatible: |
|
use_with_diffusers += f''' |
|
from diffusers import StableDiffusionXLPipeline |
|
import torch |
|
|
|
model_path = "stabilityai/stable-diffusion-xl-base-1.0" |
|
pipe = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float16) |
|
pipe.to("cuda") |
|
pipe.load_lora_weights("{lora_repo}", weight_name="{weight_name}") |
|
|
|
prompt = "{instance_prompt}..." |
|
lora_scale= 0.9 |
|
image = pipe(prompt, num_inference_steps=30, guidance_scale=7.5, cross_attention_kwargs={{"scale": lora_scale}}).images[0] |
|
image.save("image.png") |
|
''' |
|
elif not is_pivotal: |
|
use_with_diffusers += "This LoRA is not compatible with diffusers natively yet. But you can still use it on diffusers with `bmaltais/kohya_ss` LoRA class, check out this [Google Colab](https://colab.research.google.com/drive/14aEJsKdEQ9_kyfsiV6JDok799kxPul0j )" |
|
else: |
|
use_with_diffusers += f"This LoRA is not compatible with diffusers natively yet. But you can still use it on diffusers with sdxl-cog `TokenEmbeddingsHandler` class, check out the [model repo](https://huggingface.co/{lora_repo}#inference-with-🧨-diffusers)" |
|
use_with_uis = f''' |
|
## Use it with Comfy UI, Invoke AI, SD.Next, AUTO1111: |
|
|
|
### Download the `*.safetensors` weights of [here](https://huggingface.co/{lora_repo}/resolve/main/{weight_name}) |
|
|
|
- [ComfyUI guide](https://comfyanonymous.github.io/ComfyUI_examples/lora/) |
|
- [Invoke AI guide](https://invoke-ai.github.io/InvokeAI/features/CONCEPTS/?h=lora#using-loras) |
|
- [SD.Next guide](https://github.com/vladmandic/automatic) |
|
- [AUTOMATIC1111 guide](https://stable-diffusion-art.com/lora/) |
|
''' |
|
return ( |
|
updated_text, |
|
instance_prompt, |
|
gr.update(placeholder=new_placeholder), |
|
selected_state, |
|
use_with_diffusers, |
|
use_with_uis, |
|
) |
|
|
|
|
|
def check_selected(selected_state): |
|
if not selected_state: |
|
raise gr.Error("You must select a LoRA") |
|
|
|
def merge_incompatible_lora(full_path_lora, lora_scale): |
|
for weights_file in [full_path_lora]: |
|
if ";" in weights_file: |
|
weights_file, multiplier = weights_file.split(";") |
|
multiplier = float(multiplier) |
|
else: |
|
multiplier = lora_scale |
|
|
|
lora_model, weights_sd = lora.create_network_from_weights( |
|
multiplier, |
|
full_path_lora, |
|
pipe.vae, |
|
pipe.text_encoder, |
|
pipe.unet, |
|
for_inference=True, |
|
) |
|
lora_model.merge_to( |
|
pipe.text_encoder, pipe.unet, weights_sd, torch.float16, "cuda" |
|
) |
|
del weights_sd |
|
del lora_model |
|
gc.collect() |
|
|
|
def run_lora(prompt, negative, lora_scale, selected_state, sdxl_loras, progress=gr.Progress(track_tqdm=True)): |
|
global last_lora, last_merged, last_fused, pipe |
|
|
|
if negative == "": |
|
negative = None |
|
|
|
if not selected_state: |
|
raise gr.Error("You must select a LoRA") |
|
repo_name = sdxl_loras[selected_state.index]["repo"] |
|
weight_name = sdxl_loras[selected_state.index]["weights"] |
|
|
|
full_path_lora = state_dicts[repo_name]["saved_name"] |
|
loaded_state_dict = state_dicts[repo_name]["state_dict"] |
|
cross_attention_kwargs = None |
|
if last_lora != repo_name: |
|
if last_merged: |
|
del pipe |
|
gc.collect() |
|
pipe = copy.deepcopy(original_pipe) |
|
pipe.to(device) |
|
elif(last_fused): |
|
pipe.unfuse_lora() |
|
pipe.unload_lora_weights() |
|
is_compatible = sdxl_loras[selected_state.index]["is_compatible"] |
|
|
|
if is_compatible: |
|
pipe.load_lora_weights(loaded_state_dict) |
|
pipe.fuse_lora(lora_scale) |
|
last_fused = True |
|
else: |
|
is_pivotal = sdxl_loras[selected_state.index]["is_pivotal"] |
|
if(is_pivotal): |
|
pipe.load_lora_weights(loaded_state_dict) |
|
pipe.fuse_lora(lora_scale) |
|
last_fused = True |
|
|
|
|
|
text_embedding_name = sdxl_loras[selected_state.index]["text_embedding_weights"] |
|
text_encoders = [pipe.text_encoder, pipe.text_encoder_2] |
|
tokenizers = [pipe.tokenizer, pipe.tokenizer_2] |
|
embedding_path = hf_hub_download(repo_id=repo_name, filename=text_embedding_name, repo_type="model") |
|
embhandler = TokenEmbeddingsHandler(text_encoders, tokenizers) |
|
embhandler.load_embeddings(embedding_path) |
|
|
|
else: |
|
merge_incompatible_lora(full_path_lora, lora_scale) |
|
last_fused=False |
|
last_merged = True |
|
|
|
image = pipe( |
|
prompt=prompt, |
|
negative_prompt=negative, |
|
width=1024, |
|
height=1024, |
|
num_inference_steps=20, |
|
guidance_scale=7.5, |
|
).images[0] |
|
last_lora = repo_name |
|
gc.collect() |
|
return image, gr.update(visible=True) |
|
|
|
def shuffle_gallery(sdxl_loras): |
|
random.shuffle(sdxl_loras) |
|
return [(item["image"], item["title"]) for item in sdxl_loras], sdxl_loras |
|
|
|
def swap_gallery(order, sdxl_loras): |
|
if(order == "random"): |
|
return shuffle_gallery(sdxl_loras) |
|
else: |
|
sorted_gallery = sorted(sdxl_loras, key=lambda x: x.get(order, 0), reverse=True) |
|
return [(item["image"], item["title"]) for item in sorted_gallery], sorted_gallery |
|
|
|
|
|
with gr.Blocks(css="custom.css") as demo: |
|
gr_sdxl_loras = gr.State(value=sdxl_loras_raw) |
|
title = gr.HTML( |
|
"""<h1><img src="https://i.imgur.com/vT48NAO.png" alt="LoRA"> LoRA the Explorer</h1>""", |
|
elem_id="title", |
|
) |
|
selected_state = gr.State() |
|
with gr.Row(): |
|
with gr.Box(elem_id="gallery_box"): |
|
order_gallery = gr.Radio(choices=["random", "likes"], value="random", label="Order by", elem_id="order_radio") |
|
gallery = gr.Gallery( |
|
|
|
label="SDXL LoRA Gallery", |
|
allow_preview=False, |
|
columns=3, |
|
elem_id="gallery", |
|
show_share_button=False |
|
) |
|
with gr.Column(): |
|
prompt_title = gr.Markdown( |
|
value="### Click on a LoRA in the gallery to select it", |
|
visible=True, |
|
elem_id="selected_lora", |
|
) |
|
with gr.Row(): |
|
prompt = gr.Textbox(label="Prompt", show_label=False, lines=1, max_lines=1, placeholder="Type a prompt after selecting a LoRA", elem_id="prompt") |
|
button = gr.Button("Run", elem_id="run_button") |
|
with gr.Group(elem_id="share-btn-container", visible=False) as share_group: |
|
community_icon = gr.HTML(community_icon_html) |
|
loading_icon = gr.HTML(loading_icon_html) |
|
share_button = gr.Button("Share to community", elem_id="share-btn") |
|
result = gr.Image( |
|
interactive=False, label="Generated Image", elem_id="result-image" |
|
) |
|
with gr.Accordion("Advanced options", open=False): |
|
negative = gr.Textbox(label="Negative Prompt") |
|
weight = gr.Slider(0, 10, value=1, step=0.1, label="LoRA weight") |
|
|
|
with gr.Column(elem_id="extra_info"): |
|
with gr.Accordion( |
|
"Use it with: 🧨 diffusers, ComfyUI, Invoke AI, SD.Next, AUTO1111", |
|
open=False, |
|
elem_id="accordion", |
|
): |
|
with gr.Row(): |
|
use_diffusers = gr.Markdown("""## Select a LoRA first 🤗""") |
|
use_uis = gr.Markdown() |
|
with gr.Accordion("Submit a LoRA! 📥", open=False): |
|
submit_title = gr.Markdown( |
|
"### Streamlined submission coming soon! Until then [suggest your LoRA in the community tab](https://huggingface.co/spaces/multimodalart/LoraTheExplorer/discussions) 🤗" |
|
) |
|
with gr.Box(elem_id="soon"): |
|
submit_source = gr.Radio( |
|
["Hugging Face", "CivitAI"], |
|
label="LoRA source", |
|
value="Hugging Face", |
|
) |
|
with gr.Row(): |
|
submit_source_hf = gr.Textbox( |
|
label="Hugging Face Model Repo", |
|
info="In the format `username/model_id`", |
|
) |
|
submit_safetensors_hf = gr.Textbox( |
|
label="Safetensors filename", |
|
info="The filename `*.safetensors` in the model repo", |
|
) |
|
with gr.Row(): |
|
submit_trigger_word_hf = gr.Textbox(label="Trigger word") |
|
submit_image = gr.Image( |
|
label="Example image (optional if the repo already contains images)" |
|
) |
|
submit_button = gr.Button("Submit!") |
|
submit_disclaimer = gr.Markdown( |
|
"This is a curated gallery by me, [apolinário (multimodal.art)](https://twitter.com/multimodalart). I'll try to include as many cool LoRAs as they are submitted! You can [duplicate this Space](https://huggingface.co/spaces/multimodalart/LoraTheExplorer?duplicate=true) to use it privately, and add your own LoRAs by editing `sdxl_loras.json` in the Files tab of your private space." |
|
) |
|
order_gallery.change( |
|
fn=swap_gallery, |
|
inputs=[order_gallery, gr_sdxl_loras], |
|
outputs=[gallery, gr_sdxl_loras], |
|
queue=False |
|
) |
|
gallery.select( |
|
fn=update_selection, |
|
inputs=[gr_sdxl_loras], |
|
outputs=[prompt_title, prompt, prompt, selected_state, use_diffusers, use_uis], |
|
queue=False, |
|
show_progress=False |
|
) |
|
prompt.submit( |
|
fn=check_selected, |
|
inputs=[selected_state], |
|
queue=False, |
|
show_progress=False |
|
).success( |
|
fn=run_lora, |
|
inputs=[prompt, negative, weight, selected_state, gr_sdxl_loras], |
|
outputs=[result, share_group], |
|
) |
|
button.click( |
|
fn=check_selected, |
|
inputs=[selected_state], |
|
queue=False, |
|
show_progress=False |
|
).success( |
|
fn=run_lora, |
|
inputs=[prompt, negative, weight, selected_state, gr_sdxl_loras], |
|
outputs=[result, share_group], |
|
) |
|
share_button.click(None, [], [], _js=share_js) |
|
demo.load(fn=shuffle_gallery, inputs=[gr_sdxl_loras], outputs=[gallery, gr_sdxl_loras], queue=False) |
|
demo.queue(max_size=20) |
|
demo.launch() |