|
import gradio as gr |
|
import torch |
|
from diffusers import StableDiffusionXLPipeline, AutoencoderKL |
|
from huggingface_hub import hf_hub_download |
|
import lora |
|
from time import sleep |
|
import copy |
|
import json |
|
|
|
with open("sdxl_loras.json", "r") as file: |
|
sdxl_loras = [ |
|
( |
|
item["image"], |
|
item["title"], |
|
item["repo"], |
|
item["trigger_word"], |
|
item["weights"], |
|
item["is_compatible"], |
|
) |
|
for item in json.load(file) |
|
] |
|
|
|
saved_names = [ |
|
hf_hub_download(repo_id, filename) for _, _, repo_id, _, filename, _ in sdxl_loras |
|
] |
|
|
|
device = "cuda" |
|
|
|
def update_selection(selected_state: gr.SelectData): |
|
lora_repo = sdxl_loras[selected_state.index][2] |
|
instance_prompt = sdxl_loras[selected_state.index][3] |
|
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo})" |
|
return updated_text, instance_prompt, selected_state |
|
|
|
|
|
vae = AutoencoderKL.from_pretrained( |
|
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16 |
|
) |
|
pipe = StableDiffusionXLPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-xl-base-1.0", |
|
vae=vae, |
|
torch_dtype=torch.float16, |
|
).to("cpu") |
|
original_pipe = copy.deepcopy(pipe) |
|
pipe.to(device) |
|
|
|
last_lora = "" |
|
last_merged = False |
|
|
|
|
|
def run_lora(prompt, negative, weight, selected_state): |
|
global last_lora, last_merged, pipe |
|
if not selected_state: |
|
raise gr.Error("You must select a LoRA") |
|
repo_name = sdxl_loras[selected_state.index][2] |
|
weight_name = sdxl_loras[selected_state.index][4] |
|
full_path_lora = saved_names[selected_state.index] |
|
cross_attention_kwargs = None |
|
if last_lora != repo_name: |
|
if last_merged: |
|
pipe = copy.deepcopy(original_pipe) |
|
pipe.to(device) |
|
else: |
|
pipe.unload_lora_weights() |
|
is_compatible = sdxl_loras[selected_state.index][5] |
|
if is_compatible: |
|
pipe.load_lora_weights(full_path_lora) |
|
cross_attention_kwargs = {"scale": weight} |
|
else: |
|
for weights_file in [full_path_lora]: |
|
if ";" in weights_file: |
|
weights_file, multiplier = weights_file.split(";") |
|
multiplier = float(weight) |
|
else: |
|
multiplier = 1.0 |
|
|
|
multiplier = torch.tensor([multiplier], dtype=torch.float16, device=device) |
|
lora_model, weights_sd = lora.create_network_from_weights( |
|
multiplier, |
|
full_path_lora, |
|
pipe.vae, |
|
pipe.text_encoder, |
|
pipe.unet, |
|
for_inference=True, |
|
) |
|
lora_model = lora_model.to("cuda").to(dtype=torch.float16) |
|
lora_model.apply_to(pipe.text_encoder, pipe.unet) |
|
lora_model = lora_model.to("cuda").to(dtype=torch.float16) |
|
|
|
last_merged = True |
|
|
|
image = pipe( |
|
prompt=prompt, |
|
negative_prompt=negative, |
|
num_inference_steps=20, |
|
guidance_scale=7.5, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
).images[0] |
|
last_lora = repo_name |
|
return image |
|
|
|
|
|
css = """ |
|
#title{text-align: center;margin-bottom: 0.5em} |
|
#title h1{font-size: 3em} |
|
#prompt textarea{width: calc(100% - 160px);border-top-right-radius: 0px;border-bottom-right-radius: 0px;} |
|
#run_button{position:absolute;margin-top: 38px;right: 0;margin-right: 0.8em;border-bottom-left-radius: 0px; |
|
border-top-left-radius: 0px;} |
|
#gallery{display:flex} |
|
#gallery .grid-wrap{min-height: 100%;} |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
title = gr.Markdown("# LoRA the Explorer 🔎", elem_id="title") |
|
with gr.Row(): |
|
gallery = gr.Gallery( |
|
value=[(a, b) for a, b, _, _, _, _ in sdxl_loras], |
|
label="SDXL LoRA Gallery", |
|
allow_preview=False, |
|
columns=3, |
|
elem_id="gallery", |
|
) |
|
with gr.Column(): |
|
prompt_title = gr.Markdown( |
|
value="### Click on a LoRA in the gallery to select it", visible=True |
|
) |
|
with gr.Row(): |
|
prompt = gr.Textbox(label="Prompt", elem_id="prompt") |
|
button = gr.Button("Run", elem_id="run_button") |
|
result = gr.Image(interactive=False, label="result") |
|
with gr.Accordion("Advanced options", open=False): |
|
negative = gr.Textbox(label="Negative Prompt") |
|
weight = gr.Slider(0, 1, value=1, step=0.1, label="LoRA weight") |
|
with gr.Column(): |
|
gr.Markdown("Use it with:") |
|
with gr.Row(): |
|
with gr.Accordion("🧨 diffusers", open=False): |
|
gr.Markdown("") |
|
with gr.Accordion("ComfyUI", open=False): |
|
gr.Markdown("") |
|
with gr.Accordion("Invoke AI", open=False): |
|
gr.Markdown("") |
|
with gr.Accordion("SD.Next (AUTO1111 fork)", open=False): |
|
gr.Markdown("") |
|
selected_state = gr.State() |
|
gallery.select( |
|
update_selection, |
|
outputs=[prompt_title, prompt, selected_state], |
|
queue=False, |
|
show_progress=False, |
|
) |
|
prompt.submit( |
|
fn=run_lora, inputs=[prompt, negative, weight, selected_state], outputs=result |
|
) |
|
button.click( |
|
fn=run_lora, inputs=[prompt, negative, weight, selected_state], outputs=result |
|
) |
|
|
|
|
|
demo.launch() |
|
|