|
import gradio as gr |
|
import torch |
|
from diffusers import StableDiffusionXLPipeline, AutoencoderKL |
|
from huggingface_hub import hf_hub_download |
|
import lora |
|
from time import sleep |
|
import copy |
|
|
|
sdxl_loras = [ |
|
("pixel-art-xl.jpeg", "Pixel Art XL", "nerijs/pixel-art-xl", "pixel art", "pixel-art-xl.safetensors", True), |
|
("papercut_SDXL.jpeg", "Papercut SDXL", "TheLastBen/Papercut_SDXL", "papercut", "papercut.safetensors", False), |
|
("lego-minifig-xl.jpeg", "Lego Minifig XL", "nerijs/lego-minifig-xl", "lego minifig", "legominifig-v1.0-000003.safetensors", True), |
|
("3d_style_4.jpeg", "3D Render Style", "goofyai/3d_render_style_xl", "3d style", "3d_render_style_xl.safetensors", True), |
|
("LogoRedmond-LogoLoraForSDXL.jpeg","Logo.Redmond", "artificialguybr/LogoRedmond-LogoLoraForSDXL", "LogoRedAF", "LogoRedmond_LogoRedAF.safetensors", False), |
|
("LineAni.Redmond.png", "LinearManga.Redmond", "artificialguybr/LineAniRedmond-LinearMangaSDXL", "LineAniAF", "LineAniRedmond-LineAniAF.safetensors", True), |
|
("embroid.png","Embroidery Style","ostris/embroidery_style_lora_sdxl","","embroidered_style_v1_sdxl.safetensors",False), |
|
("watercolor.png","Watercolor Style","ostris/watercolor_style_lora_sdxl","","watercolor_v1_sdxl.safetensors",False), |
|
("crayon.png","Crayon Style","ostris/crayon_style_lora_sdxl","","crayons_v1_sdxl.safetensors",False), |
|
("dog.png", "Cyborg Style", "goofyai/cyborg_style_xl", "cyborg style", "cyborg_style_xl-off.safetensors", True), |
|
("ToyRedmond-ToyLoraForSDXL10.png","Toy.Redmond", "artificialguybr/ToyRedmond-ToyLoraForSDXL10", "FnkRedmAF", "ToyRedmond-FnkRedmAF.safetensors", True), |
|
("voxel-xl-lora.png", "Voxel XL", "Fictiverse/Voxel_XL_Lora", "voxel style", "VoxelXL_v1.safetensors", True), |
|
("pikachu.webp", "Pikachu XL", "TheLastBen/Pikachu_SDXL", "pikachu", "pikachu.safetensors", False), |
|
("william_eggleston.webp", "William Eggleston Style", "TheLastBen/William_Eggleston_Style_SDXL", "by william eggleston", "wegg.safetensors", False), |
|
("josef_koudelka.webp", "Josef Koudelka Style", "TheLastBen/Josef_Koudelka_Style_SDXL", "by josef koudelka", "koud.safetensors", False), |
|
("corgi_brick.jpeg", "Lego BrickHeadz", "nerijs/lego-brickheadz-xl", "lego brickheadz", "legobrickheadz-v1.0-000004.safetensors", True) |
|
] |
|
|
|
saved_names = [hf_hub_download(repo_id, filename) for _, _, repo_id, _, filename, _ in sdxl_loras] |
|
|
|
def update_selection(selected_state: gr.SelectData): |
|
sleep(60) |
|
lora_repo = sdxl_loras[selected_state.index][2] |
|
instance_prompt = sdxl_loras[selected_state.index][3] |
|
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo})" |
|
return updated_text, instance_prompt, selected_state |
|
|
|
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) |
|
mutable_pipe = StableDiffusionXLPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-xl-base-1.0", |
|
vae=vae, |
|
torch_dtype=torch.float16, |
|
).to("cpu") |
|
original_pipe = copy.deepcopy(mutable_pipe) |
|
mutable_pipe.to("cuda") |
|
|
|
last_lora = "" |
|
last_merged = False |
|
|
|
def run_lora(prompt, negative, weight, selected_state): |
|
global last_lora, last_merged |
|
pipe = mutable_pipe |
|
if(not selected_state): |
|
raise gr.Error("You must select a LoRA") |
|
repo_name = sdxl_loras[selected_state.index][2] |
|
weight_name = sdxl_loras[selected_state.index][4] |
|
full_path_lora = saved_names[selected_state.index] |
|
cross_attention_kwargs = None |
|
if(last_lora != repo_name): |
|
if(last_merged): |
|
pipe = copy.deepcopy(original_pipe) |
|
pipe.to("cuda") |
|
else: |
|
pipe.unload_lora_weights() |
|
is_compatible = sdxl_loras[selected_state.index][5] |
|
if(is_compatible): |
|
pipe.load_lora_weights(full_path_lora) |
|
cross_attention_kwargs={"scale": weight} |
|
else: |
|
for weights_file in [full_path_lora]: |
|
if ";" in weights_file: |
|
weights_file, multiplier = weights_file.split(";") |
|
multiplier = float(weight) |
|
else: |
|
multiplier = 1.0 |
|
|
|
lora_model, weights_sd = lora.create_network_from_weights( |
|
multiplier, full_path_lora, pipe.vae, pipe.text_encoder, pipe.unet, for_inference=True |
|
) |
|
lora_model.merge_to(pipe.text_encoder, pipe.unet, weights_sd, torch.float16, "cuda") |
|
last_merged = True |
|
image = pipe( |
|
prompt=prompt, negative_prompt=negative, num_inference_steps=20, guidance_scale=7.5, cross_attention_kwargs=cross_attention_kwargs).images[0] |
|
last_lora = repo_name |
|
return image |
|
|
|
css = ''' |
|
#prompt textarea{width: calc(100% - 160px);border-top-right-radius: 0px;border-bottom-right-radius: 0px;} |
|
#run_button{position:absolute;margin-top: 38px;right: 0;margin-right: 0.8em;border-bottom-left-radius: 0px; |
|
border-top-left-radius: 0px;} |
|
#gallery{display:flex} |
|
#gallery .grid-wrap{min-height: 100%;} |
|
''' |
|
|
|
with gr.Blocks(css=css) as demo: |
|
title = gr.Markdown("# Lora The Explorer XL") |
|
with gr.Row(): |
|
gallery = gr.Gallery(value=[(a, b) for a, b, _, _, _, _ in sdxl_loras], |
|
label="LoRA Gallery", |
|
allow_preview=False, |
|
columns=3, |
|
elem_id="gallery" |
|
) |
|
with gr.Column(): |
|
prompt_title = gr.Markdown(value="### Click on a LoRA in the gallery to select it", visible=True) |
|
with gr.Row(): |
|
prompt = gr.Textbox(label="Prompt", elem_id="prompt") |
|
button = gr.Button("Run", elem_id="run_button") |
|
result = gr.Image(interactive=False, label="result") |
|
with gr.Accordion("Advanced options", open=False): |
|
negative = gr.Textbox(label="Negative Prompt") |
|
weight = gr.Slider(0, 1, value=1, step=0.1, label="LoRA weight") |
|
with gr.Column(): |
|
gr.Markdown("Use it with:") |
|
with gr.Row(): |
|
with gr.Accordion("🧨 diffusers", open=False): |
|
gr.Markdown("") |
|
with gr.Accordion("ComfyUI", open=False): |
|
gr.Markdown("") |
|
with gr.Accordion("Invoke AI", open=False): |
|
gr.Markdown("") |
|
with gr.Accordion("SD.Next (AUTO1111 fork)", open=False): |
|
gr.Markdown("") |
|
selected_state = gr.State() |
|
gallery.select(update_selection, outputs=[prompt_title, prompt, selected_state], queue=False, show_progress=False) |
|
button.click(fn=run_lora, inputs=[prompt, negative, weight, selected_state], outputs=result) |
|
|
|
demo.launch() |