|
|
|
|
|
import gradio as gr |
|
|
|
from model import Model |
|
from settings import CACHE_EXAMPLES, MAX_SEED |
|
from utils import randomize_seed_fn |
|
|
|
|
|
def create_demo(model: Model) -> gr.Blocks: |
|
examples = [ |
|
"A chair that looks like an avocado", |
|
"An airplane that looks like a banana", |
|
"A spaceship", |
|
"A birthday cupcake", |
|
"A chair that looks like a tree", |
|
"A green boot", |
|
"A penguin", |
|
"Ube ice cream cone", |
|
"A bowl of vegetables", |
|
] |
|
|
|
def process_example_fn(prompt: str) -> str: |
|
return model.run_text(prompt) |
|
|
|
with gr.Blocks() as demo: |
|
with gr.Box(): |
|
with gr.Row(elem_id="prompt-container"): |
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
container=False, |
|
) |
|
run_button = gr.Button("Run", scale=0) |
|
result = gr.Model3D(label="Result", show_label=False) |
|
with gr.Accordion("Advanced options", open=False): |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
guidance_scale = gr.Slider( |
|
label="Guidance scale", |
|
minimum=1, |
|
maximum=20, |
|
step=0.1, |
|
value=15.0, |
|
) |
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps", |
|
minimum=1, |
|
maximum=100, |
|
step=1, |
|
value=64, |
|
) |
|
|
|
gr.Examples( |
|
examples=examples, |
|
inputs=prompt, |
|
outputs=result, |
|
fn=process_example_fn, |
|
cache_examples=CACHE_EXAMPLES, |
|
) |
|
|
|
inputs = [ |
|
prompt, |
|
seed, |
|
guidance_scale, |
|
num_inference_steps, |
|
] |
|
prompt.submit( |
|
fn=randomize_seed_fn, |
|
inputs=[seed, randomize_seed], |
|
outputs=seed, |
|
queue=False, |
|
api_name=False, |
|
).then( |
|
fn=model.run_text, |
|
inputs=inputs, |
|
outputs=result, |
|
api_name=False, |
|
) |
|
run_button.click( |
|
fn=randomize_seed_fn, |
|
inputs=[seed, randomize_seed], |
|
outputs=seed, |
|
queue=False, |
|
api_name=False, |
|
).then( |
|
fn=model.run_text, |
|
inputs=inputs, |
|
outputs=result, |
|
api_name="text-to-3d", |
|
) |
|
return demo |
|
|