import gradio as gr from transformers import pipeline from huggingface_hub import InferenceClient import requests from bs4 import BeautifulSoup # Initialize the text generation pipeline pipe = pipeline("text-generation", model="microsoft/Phi-3-mini-4k-instruct", trust_remote_code=True) client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def web_search(query): # Simulate a web search using Google response = requests.get(f"https://www.google.com/search?q={query}") soup = BeautifulSoup(response.text, "html.parser") results = [] for g in soup.find_all('div', class_='BNeawe vvjwJb AP7Wnd'): results.append(g.get_text()) return results def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) # Check if message is a search request if "search:" in message.lower(): search_query = message.split("search:", 1)[1].strip() search_results = web_search(search_query) response = "\n".join(search_results[:5]) # Return top 5 search results else: messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response yield response demo = gr.ChatInterface( respond, title="INDONESIAN CHATBOT", additional_inputs=[ gr.Textbox(value="You are a friendly AI Assistens Speak in indonesian", label="System message", visible=False), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()