Spaces:
Runtime error
Runtime error
File size: 5,978 Bytes
9f8b92b 72dbab4 9f8b92b b94c0d6 9f8b92b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
# Adapted from https://docs.streamlit.io/knowledge-base/tutorials/build-conversational-apps#build-a-simple-chatbot-gui-with-streaming
import os
import base64
import gc
import random
import tempfile
import time
import uuid
import nest_asyncio
from dotenv import load_dotenv
from IPython.display import Markdown, display
from llama_index.core import Settings
from llama_index.llms.ollama import Ollama
from llama_index.core import PromptTemplate
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.core import VectorStoreIndex, ServiceContext, SimpleDirectoryReader
import streamlit as st
if "id" not in st.session_state:
st.session_state.id = uuid.uuid4()
st.session_state.file_cache = {}
session_id = st.session_state.id
client = None
def reset_chat():
st.session_state.messages = []
st.session_state.context = None
gc.collect()
def display_pdf(file):
# Opening file from file path
st.markdown("### PDF Preview")
base64_pdf = base64.b64encode(file.read()).decode("utf-8")
# Embedding PDF in HTML
pdf_display = f"""<iframe src="data:application/pdf;base64,{base64_pdf}" width="400" height="100%" type="application/pdf"
style="height:100vh; width:100%"
>
</iframe>"""
# Displaying File
st.markdown(pdf_display, unsafe_allow_html=True)
with st.sidebar:
st.header(f"Add your documents!")
uploaded_file = st.file_uploader("Choose your `.pdf` file", type="pdf")
if uploaded_file:
try:
with tempfile.TemporaryDirectory() as temp_dir:
file_path = os.path.join(temp_dir, uploaded_file.name)
with open(file_path, "wb") as f:
f.write(uploaded_file.getvalue())
file_key = f"{session_id}-{uploaded_file.name}"
st.write("Indexing your document...")
if file_key not in st.session_state.get('file_cache', {}):
if os.path.exists(temp_dir):
loader = SimpleDirectoryReader(
input_dir = temp_dir,
required_exts=[".pdf"],
recursive=True
)
else:
st.error('Could not find the file you uploaded, please check again...')
st.stop()
docs = loader.load_data()
# setup llm & embedding model
llm=Ollama(model="llama3", request_timeout=120.0)
embed_model = HuggingFaceEmbedding( model_name="BAAI/bge-large-en-v1.5", trust_remote_code=True)
# Creating an index over loaded data
Settings.embed_model = embed_model
index = VectorStoreIndex.from_documents(docs, show_progress=True)
# Create the query engine, where we use a cohere reranker on the fetched nodes
Settings.llm = llm
query_engine = index.as_query_engine(streaming=True)
# ====== Customise prompt template ======
qa_prompt_tmpl_str = (
"Context information is below.\n"
"---------------------\n"
"{context_str}\n"
"---------------------\n"
"Given the context information above I want you to think step by step to answer the query in a crisp manner, incase case you don't know the answer say 'I don't know!'.\n"
"Query: {query_str}\n"
"Answer: "
)
qa_prompt_tmpl = PromptTemplate(qa_prompt_tmpl_str)
query_engine.update_prompts(
{"response_synthesizer:text_qa_template": qa_prompt_tmpl}
)
st.session_state.file_cache[file_key] = query_engine
else:
query_engine = st.session_state.file_cache[file_key]
# Inform the user that the file is processed and Display the PDF uploaded
st.success("Ready to Chat!")
display_pdf(uploaded_file)
except Exception as e:
st.error(f"An error occurred: {e}")
st.stop()
col1, col2 = st.columns([6, 1])
with col1:
st.header(f"Chat with Docs using Llama-3")
with col2:
st.button("Clear ↺", on_click=reset_chat)
# Initialize chat history
if "messages" not in st.session_state:
reset_chat()
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Accept user input
if prompt := st.chat_input("What's up?"):
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
# Display user message in chat message container
with st.chat_message("user"):
st.markdown(prompt)
# Display assistant response in chat message container
with st.chat_message("assistant"):
message_placeholder = st.empty()
full_response = ""
# Simulate stream of response with milliseconds delay
streaming_response = query_engine.query(prompt)
for chunk in streaming_response.response_gen:
full_response += chunk
message_placeholder.markdown(full_response + "▌")
# full_response = query_engine.query(prompt)
message_placeholder.markdown(full_response)
# st.session_state.context = ctx
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": full_response}) |