File size: 5,206 Bytes
d0cb1cf
 
 
 
 
c3a9149
a1c7a27
 
fd9d69a
 
 
 
 
 
 
 
 
d0cb1cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3a9149
d0cb1cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# Import necessary libraries
import nest_asyncio
import gradio as gr
import requests
from huggingface_hub import InferenceClient
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain.document_loaders import TextLoader
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.document_loaders import AsyncChromiumLoader
from langchain.document_loaders import TextLoader
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.document_loaders import AsyncChromiumLoader

# Apply nest_asyncio for asynchronous operations in environments like Jupyter notebooks
nest_asyncio.apply()

# Initialize the InferenceClient with the specified model
client = InferenceClient(
    "mistralai/Mistral-7B-Instruct-v0.1"
)

# Set up a prompt template for the model (customize as needed)
prompt_template = PromptTemplate()

# Define the list of articles to index
articles = [
    "https://www.fantasypros.com/2023/11/rival-fantasy-nfl-week-10/",
    "https://www.fantasypros.com/2023/11/5-stats-to-know-before-setting-your-fantasy-lineup-week-10/",
    "https://www.fantasypros.com/2023/11/nfl-week-10-sleeper-picks-player-predictions-2023/",
    "https://www.fantasypros.com/2023/11/nfl-dfs-week-10-stacking-advice-picks-2023-fantasy-football/",
    "https://www.fantasypros.com/2023/11/players-to-buy-low-sell-high-trade-advice-2023-fantasy-football/"
]

# Scrapes the blogs above
loader = AsyncChromiumLoader(articles)
docs = loader.load()

# Converts HTML to plain text 
html2text = Html2TextTransformer()
docs_transformed = html2text.transform_documents(docs)

# Chunk text
text_splitter = CharacterTextSplitter(chunk_size=100, 
                                      chunk_overlap=10)
chunked_documents = text_splitter.split_documents(docs_transformed)

# Load chunked documents into the FAISS index
db = FAISS.from_documents(chunked_documents, 
                          HuggingFaceEmbeddings(model_name='sentence-transformers/all-mpnet-base-v2'))

retriever = db.as_retriever()

# Create the RAG chain by combining the language model with the retriever
rag_chain = ({"context": retriever} | LLMChain)

# Define the generation function for the Gradio interface
def generate(
    prompt, history, temperature=0.7, max_new_tokens=256, top_p=0.95, repetition_penalty=1.1,
):
    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=42,
    )

    formatted_prompt = "<s>"
    for user_prompt, bot_response in history:
        formatted_prompt += f"[INST] {user_prompt} [/INST]"
        formatted_prompt += f" {bot_response}</s> "
    formatted_prompt += f"[INST] {prompt} [/INST]"

    stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    output = ""

    for response in stream:
        output += response.token.text
        yield output
    return output

# Define additional input components for the Gradio interface
additional_inputs = [
    gr.Slider(
        label="Temperature",
        value=0.7,
        minimum=0.0,
        maximum=1.0,
        step=0.05,
        interactive=True,
        info="Higher values produce more diverse outputs",
    ),
    gr.Slider(
        label="Max new tokens",
        value=256,
        minimum=0,
        maximum=1024,
        step=64,
        interactive=True,
        info="The maximum number of new tokens",
    ),
    gr.Slider(
        label="Top-p (nucleus sampling)",
        value=0.95,
        minimum=0.0,
        maximum=1,
        step=0.05,
        interactive=True,
        info="Higher values sample more low-probability tokens",
    ),
    gr.Slider(
        label="Repetition penalty",
        value=1.1,
        minimum=1.0,
        maximum=2.0,
        step=0.05,
        interactive=True,
        info="Penalize repeated tokens",
    )
]

# Define CSS for styling the Gradio interface
css = """
  #mkd {
    height: 500px; 
    overflow: auto; 
    border: 1px solid #ccc; 
  }
"""

# Create the Gradio interface with the chat component
with gr.Blocks(css=css) as demo:
    gr.HTML("<h1><center>Mistral 7B Instruct<h1><center>")
    gr.HTML("<h3><center>In this demo, you can chat with <a href='https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1'>Mistral-7B-Instruct</a> model. 📜<h3><center>")
    gr.HTML("<h3><center>Learn more about the model <a href='https://huggingface.co/docs/transformers/main/model_doc/mistral'>here</a>. 📚<h3><center>")
    gr.ChatInterface(
        generate,
        additional_inputs=additional_inputs,
        examples=[["What is the secret to life?"], ["Write me a recipe for pancakes."]],
    )

# Launch the Gradio interface with debugging enabled
demo.queue().launch(debug=True)