File size: 7,309 Bytes
d3bc923
7c9a8a2
5e22f32
 
 
5158737
b18d732
5807bc7
9e6c667
b18d732
5e22f32
ebc3421
09acac3
5e22f32
 
d3bc923
ee96a26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e22f32
 
 
87d2f85
c5cb10d
11dae3a
b18d732
 
c5cb10d
dba27fb
d3bc923
3ac7ed9
d3bc923
 
 
 
c22db75
c5cb10d
c0764f1
 
 
 
 
f5885aa
c5cb10d
c22db75
 
2698c59
09acac3
5e22f32
 
 
6de5c93
31dee74
5e22f32
5158737
 
 
5e22f32
 
 
7b5b35f
5e22f32
7b5b35f
6de5c93
d3f883b
e68ada2
6de5c93
d3f883b
6de5c93
b18d732
6de5c93
b18d732
5e22f32
e68ada2
 
 
 
f72cb30
5e22f32
 
 
ec8a8b1
 
 
 
 
 
 
 
 
7bcdff2
ec8a8b1
 
5e22f32
 
 
228e5ed
5e22f32
ef442b3
2698c59
d3bc923
ba1fa51
b18d732
74c3b09
d3bc923
699ee01
 
78bfe72
 
 
6109b5b
78bfe72
 
 
 
dba27fb
 
699ee01
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import gradio as gr
import numpy as np
from keras.models import Model
from keras.saving import load_model
from keras.layers import *
from keras.regularizers import L1
from keras.constraints import Constraint
from tensorflow.keras.optimizers import RMSprop
from keras.preprocessing.text import Tokenizer
import keras.backend as K
import os
import hashlib
import keras

os.mkdir("cache")

def todset(text: str):
    lines = [x.rstrip("\n").lower().split("→") for x in text.split("\n")]
    lines = [(x[0].replace("\\n", "\n"), x[1].replace("\\n", "\n")) for x in lines]

    responses = []
    for i in lines:
        if i[1] not in responses:
            responses.append(i[1])

    dset = {}
    for sample in lines:
        dset[sample[0]] = responses.index(sample[1])

    return (dset, responses)

def hash_str(data: str):
    return hashlib.md5(data.encode('utf-8')).hexdigest()

def train(message: str = "", regularization: float = 0.0001, dropout: float = 0.1, learning_rate: float = 0.001, epochs: int = 16, emb_size: int = 100, input_len: int = 16, kernels_count: int = 64, kernel_size: int = 4, left_padding: bool = False, end_activation: str = "softmax", data: str = ""):
    data_hash = None
    if "→" not in data or "\n" not in data:
            if data in os.listdir("cache"): # data = filename
                data_hash = data # set the hash to the file name
            else:
                return "Data example:\nquestion→answer\nquestion→answer\netc."
    dset, responses = todset(data)
    resps_len = len(responses)
    tokenizer = Tokenizer()
    tokenizer.fit_on_texts(list(dset.keys()))
    
    vocab_size = len(tokenizer.word_index) + 1
    inp_len = input_len
    if data_hash is None:
        if end_activation is not None:
            data_hash = hash_str(data)+"_"+str(regularization)+"_"+str(dropout)+"_"+str(learning_rate)+"_"+str(epochs)+"_"+str(emb_size)+"_"+str(inp_len)+"_"+str(kernels_count)+"_"+str(kernel_size)+"_"+str(left_padding)+"_"+end_activation+".keras"
        else:
            
            data_hash = hash_str(data)+"_"+str(regularization)+"_"+str(dropout)+"_"+str(learning_rate)+"_"+str(epochs)+"_"+str(emb_size)+"_"+str(inp_len)+"_"+str(kernels_count)+"_"+str(kernel_size)+"_"+str(left_padding)+".keras"
    if message == "!getmodelhash":
        return data_hash
    else:
        inp_len = int(data_hash.split("_")[-3])
    if data_hash in os.listdir("cache"):
        model = load_model("cache/"+data_hash)
    else:
        input_layer = Input(shape=(inp_len,))
        emb_layer = Embedding(input_dim=vocab_size, output_dim=emb_size, input_length=inp_len)(input_layer)
        dropout1_layer = Dropout(dropout)(emb_layer)
        attn_layer = MultiHeadAttention(num_heads=4, key_dim=128)(dropout1_layer, dropout1_layer, dropout1_layer)
        noise_layer = GaussianNoise(0.1)(attn_layer)
        conv1_layer = Conv1D(kernels_count, kernel_size, padding='same', activation='relu', strides=1, input_shape=(64, 128), kernel_regularizer=L1(regularization))(noise_layer)
        conv2_layer = Conv1D(16, 4, padding='same', activation='relu', strides=1, kernel_regularizer=L1(regularization))(conv1_layer)
        conv3_layer = Conv1D(8, 2, padding='same', activation='relu', strides=1, kernel_regularizer=L1(regularization))(conv2_layer)
        flatten_layer = Flatten()(conv3_layer)
        attn_flatten_layer = Flatten()(attn_layer)
        conv1_flatten_layer = Flatten()(conv1_layer)
        conv2_flatten_layer = Flatten()(conv2_layer)
        conv3_flatten_layer = Flatten()(conv3_layer)
        concat1_layer = Concatenate()([flatten_layer, attn_flatten_layer, conv1_flatten_layer, conv2_flatten_layer, conv3_flatten_layer])
        dropout2_layer = Dropout(dropout)(concat1_layer)
        dense1_layer = Dense(1024, activation="linear", kernel_regularizer=L1(regularization))(dropout2_layer)
        prelu1_layer = PReLU()(dense1_layer)
        dropout3_layer = Dropout(dropout)(prelu1_layer)
        dense2_layer = Dense(512, activation="relu", kernel_regularizer=L1(regularization))(dropout3_layer)
        dropout4_layer = Dropout(dropout)(dense2_layer)
        dense3_layer = Dense(512, activation="relu", kernel_regularizer=L1(regularization))(dropout4_layer)
        dropout5_layer = Dropout(dropout)(dense3_layer)
        dense4_layer = Dense(256, activation="relu", kernel_regularizer=L1(regularization))(dropout5_layer)
        concat2_layer = Concatenate()([dense4_layer, prelu1_layer, attn_flatten_layer, conv1_flatten_layer])
        if end_activation is not None:
            dense4_layer = Dense(resps_len, activation=end_activation, kernel_regularizer=L1(regularization))(concat2_layer)
        else:
            dense4_layer = Dense(resps_len, activation="softmax", kernel_regularizer=L1(regularization))(concat2_layer)
        model = Model(inputs=input_layer, outputs=dense4_layer)
        
        X = []
        y = []
        if left_padding:
            for key in dset:
                tokens = tokenizer.texts_to_sequences([key,])[0]
                X.append(np.array(([0,]*inp_len+list(tokens))[-inp_len:]))
                y.append(dset[key])

        else:
            for key in dset:
                tokens = tokenizer.texts_to_sequences([key,])[0]
                X.append(np.array((list(tokens)+[0,]*inp_len)[:inp_len]))
                y.append(dset[key])

        X = np.array(X)
        y = np.array(y)
        
        model.compile(optimizer=RMSprop(learning_rate=learning_rate), loss="sparse_categorical_crossentropy", metrics=["accuracy",])
        
        model.fit(X, y, epochs=epochs, batch_size=8, workers=4, use_multiprocessing=True)
        model.save(f"cache/{data_hash}")
    tokens = tokenizer.texts_to_sequences([message,])[0]
    prediction = model.predict(np.array([(list(tokens)+[0,]*inp_len)[:inp_len],]))[0]
    K.clear_session()
    return responses[np.argmax(prediction)]

if __name__ == "__main__":
    iface = gr.Interface(fn=train, inputs=["text",
                                           gr.components.Slider(0, 0.01, value=0.0001, step=1e-8, label="Regularization L1"),
                                           gr.components.Slider(0, 0.5, value=0.1, step=1e-8, label="Dropout"),
                                           gr.components.Slider(1e-8, 0.01, value=0.001, step=1e-8, label="Learning rate"),
                                           gr.components.Slider(1, 128, value=16, step=1, label="Epochs"),
                                           gr.components.Slider(1, 256, value=88, step=1, label="Embedding size"),
                                           gr.components.Slider(1, 128, value=16, step=1, label="Input Length"),
                                           gr.components.Slider(1, 128, value=64, step=1, label="Convolution kernel count"),
                                           gr.components.Slider(1, 16, value=2, step=1, label="Convolution kernel size"),
                                           gr.components.Checkbox(False, label="Use left padding"),
                                           gr.components.Radio(['softmax', 'sigmoid', 'linear', 'softplus', 'exponential', 'log_softmax'], label="Output activation function"),
                                           "text"],
                         outputs="text")
    iface.launch()