File size: 6,453 Bytes
d3bc923
7c9a8a2
5e22f32
 
 
5158737
5807bc7
9e6c667
5e22f32
ebc3421
09acac3
5e22f32
 
d3bc923
ee96a26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e22f32
 
 
ec8a8b1
c5cb10d
11dae3a
c5cb10d
 
 
 
d3bc923
3ac7ed9
d3bc923
 
 
 
c22db75
c5cb10d
ab0a5c5
c5cb10d
 
c22db75
 
2698c59
09acac3
5e22f32
 
 
6de5c93
31dee74
5e22f32
5158737
 
 
5e22f32
 
 
7b5b35f
5e22f32
7b5b35f
6de5c93
5158737
5e22f32
6de5c93
5158737
6de5c93
5158737
6de5c93
5158737
5e22f32
5158737
f72cb30
5e22f32
 
 
ec8a8b1
 
 
 
 
 
 
 
 
5a24822
ec8a8b1
 
5e22f32
 
 
228e5ed
5e22f32
ef442b3
2698c59
d3bc923
ba1fa51
09acac3
74c3b09
d3bc923
699ee01
 
ec8a8b1
 
 
31dee74
699ee01
 
0dd252c
55f0212
ec0ebad
699ee01
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import gradio as gr
import numpy as np
from keras.models import Model
from keras.saving import load_model
from keras.layers import *
from keras.regularizers import L1
from tensorflow.keras.optimizers import RMSprop
from keras.preprocessing.text import Tokenizer
import os
import hashlib
import keras

os.mkdir("cache")

def todset(text: str):
    lines = [x.rstrip("\n").lower().split("→") for x in text.split("\n")]
    lines = [(x[0].replace("\\n", "\n"), x[1].replace("\\n", "\n")) for x in lines]

    responses = []
    for i in lines:
        if i[1] not in responses:
            responses.append(i[1])

    dset = {}
    for sample in lines:
        dset[sample[0]] = responses.index(sample[1])

    return (dset, responses)

def hash_str(data: str):
    return hashlib.md5(data.encode('utf-8')).hexdigest()

def train(message: str = "", regularization: float = 0.0001, dropout: float = 0.1, learning_rate: float = 0.001, epochs: int = 16, emb_size: int = 128, input_len: int = 16, kernels_count: int = 8, kernel_size: int = 8, left_padding: bool = True, data: str = ""):
    data_hash = None
    if "→" not in data or "\n" not in data:
            if data in os.listdir("cache"):
                data_hash = data
            else:
                return "Dataset example:\nquestion→answer\nquestion→answer\netc."
    dset, responses = todset(data)
    resps_len = len(responses)
    tokenizer = Tokenizer()
    tokenizer.fit_on_texts(list(dset.keys()))
    
    vocab_size = len(tokenizer.word_index) + 1
    inp_len = input_len
    if data_hash is None:
        data_hash = hash_str(data)+"_"+str(regularization)+"_"+str(dropout)+"_"+str(learning_rate)+"_"+str(epochs)+"_"+str(emb_size)+"_"+str(inp_len)+"_"+str(kernels_count)+"_"+str(kernel_size)+".keras"
    elif message == "!getmodelhash":
        return data_hash
    else:
        inp_len = int(data_hash.split("_")[-3])
    if data_hash in os.listdir("cache"):
        model = load_model("cache/"+data_hash)
    else:
        input_layer = Input(shape=(inp_len,))
        emb_layer = Embedding(input_dim=vocab_size, output_dim=emb_size, input_length=inp_len)(input_layer)
        dropout1_layer = Dropout(dropout)(emb_layer)
        attn_layer = MultiHeadAttention(num_heads=4, key_dim=128)(dropout1_layer, dropout1_layer, dropout1_layer)
        noise_layer = GaussianNoise(0.1)(attn_layer)
        conv1_layer = Conv1D(kernels_count, kernel_size, padding='same', activation='relu', strides=1, input_shape=(64, 128), kernel_regularizer=L1(regularization))(noise_layer)
        conv2_layer = Conv1D(16, 4, padding='same', activation='relu', strides=1, kernel_regularizer=L1(regularization))(conv1_layer)
        conv3_layer = Conv1D(8, 2, padding='same', activation='relu', strides=1, kernel_regularizer=L1(regularization))(conv2_layer)
        flatten_layer = Flatten()(conv3_layer)
        attn_flatten_layer = Flatten()(attn_layer)
        conv1_flatten_layer = Flatten()(conv1_layer)
        conv2_flatten_layer = Flatten()(conv2_layer)
        conv3_flatten_layer = Flatten()(conv3_layer)
        concat1_layer = Concatenate()([flatten_layer, attn_flatten_layer, conv1_flatten_layer, conv2_flatten_layer, conv3_flatten_layer])
        dropout2_layer = Dropout(dropout)(concat1_layer)
        dense1_layer = Dense(512, activation="linear", kernel_regularizer=L1(regularization))(dropout2_layer)
        prelu1_layer = PReLU()(dense1_layer)
        dropout3_layer = Dropout(dropout)(prelu1_layer)
        dense2_layer = Dense(256, activation="tanh", kernel_regularizer=L1(regularization))(dropout3_layer)
        dropout4_layer = Dropout(dropout)(dense2_layer)
        dense3_layer = Dense(256, activation="relu", kernel_regularizer=L1(regularization))(dropout4_layer)
        dropout5_layer = Dropout(dropout)(dense3_layer)
        dense4_layer = Dense(100, activation="tanh", kernel_regularizer=L1(regularization))(dropout5_layer)
        concat2_layer = Concatenate()([dense4_layer, prelu1_layer, attn_flatten_layer, conv1_flatten_layer])
        dense4_layer = Dense(resps_len, activation="softmax", kernel_regularizer=L1(regularization))(concat2_layer)
        model = Model(inputs=input_layer, outputs=dense4_layer)
        
        X = []
        y = []
        if left_padding:
            for key in dset:
                tokens = tokenizer.texts_to_sequences([key,])[0]
                X.append(np.array(([0,]*inp_len+list(tokens))[-inp_len:]))
                y.append(dset[key])

        else:
            for key in dset:
                tokens = tokenizer.texts_to_sequences([key,])[0]
                X.append(np.array(list(tokens)+[0,]*inp_len[:inp_len]))
                y.append(dset[key])

        X = np.array(X)
        y = np.array(y)
        
        model.compile(optimizer=RMSprop(learning_rate=learning_rate), loss="sparse_categorical_crossentropy", metrics=["accuracy",])
        
        model.fit(X, y, epochs=epochs, batch_size=8, workers=4, use_multiprocessing=True)
        model.save(f"cache/{data_hash}")
    tokens = tokenizer.texts_to_sequences([message,])[0]
    prediction = model.predict(np.array([(list(tokens)+[0,]*inp_len)[:inp_len],]))[0]
    keras.backend.clear_session()
    return responses[np.argmax(prediction)]

if __name__ == "__main__":
    iface = gr.Interface(fn=train, inputs=["text",
                                           gr.inputs.Slider(0, 0.01, default=0.0001, step=1e-8, label="Regularization L1"),
                                           gr.inputs.Slider(0, 0.5, default=0.1, step=1e-8, label="Dropout"),
                                           gr.inputs.Slider(1e-8, 0.01, default=0.001, step=1e-8, label="Learning rate"),
                                           gr.inputs.Slider(1, 64, default=32, step=1, label="Epochs"),
                                           gr.inputs.Slider(1, 256, default=100, step=1, label="Embedding size"),
                                           gr.inputs.Slider(1, 128, default=16, step=1, label="Input Length"),
                                           gr.inputs.Slider(1, 128, default=64, step=1, label="Convolution kernel count"),
                                           gr.inputs.Slider(1, 16, default=8, step=1, label="Convolution kernel size"),
                                           gr.inputs.Checkbox(False, label="Use left padding"),
                                           "text"],
                         outputs="text")
    iface.launch()