Spaces:
Sleeping
Sleeping
import gradio as gr | |
from todset import todset | |
import numpy as np | |
from keras.models import Model | |
from keras.saving import load_model | |
from keras.layers import * | |
from keras.preprocessing.text import Tokenizer | |
import os | |
os.mkdir("cache") | |
emb_size = 128 | |
inp_len = 16 | |
maxshift = 4 | |
def hash_str(data: str): | |
return hashlib.md5(data.encode('utf-8')).hexdigest() | |
def train(data: str, message: str): | |
if "→" not in data or "\n" not in data: | |
return "Dataset example:\nquestion→answer\nquestion→answer\netc." | |
dset, responses = todset(data) | |
resps_len = len(responses) | |
tokenizer = Tokenizer() | |
tokenizer.fit_on_texts(list(dset.keys())) | |
vocab_size = len(tokenizer.word_index) + 1 | |
if hash_str(data)+".keras" in os.listdir("cache"): | |
model = load_model(hash_str(data)+".keras") | |
else: | |
input_layer = Input(shape=(inp_len,)) | |
emb_layer = Embedding(input_dim=vocab_size, output_dim=emb_size, input_length=inp_len)(input_layer) | |
attn_layer = MultiHeadAttention(num_heads=4, key_dim=128)(emb_layer, emb_layer, emb_layer) | |
noise_layer = GaussianNoise(0.1)(attn_layer) | |
conv1_layer = Conv1D(64, 8, padding='same', activation='relu', strides=1, input_shape=(64, 128))(noise_layer) | |
conv2_layer = Conv1D(16, 4, padding='valid', activation='relu', strides=1)(conv1_layer) | |
conv3_layer = Conv1D(8, 2, padding='valid', activation='relu', strides=1)(conv2_layer) | |
flatten_layer = Flatten()(conv3_layer) | |
attn_flatten_layer = Flatten()(attn_layer) | |
conv1_flatten_layer = Flatten()(conv1_layer) | |
conv3_flatten_layer = Flatten()(conv3_layer) | |
concat1_layer = Concatenate()([flatten_layer, attn_flatten_layer, conv1_flatten_layer, conv2_layer, conv3_flatten_layer]) | |
dense1_layer = Dense(512, activation="linear")(concat1_layer) | |
prelu1_layer = PReLU()(dense1_layer) | |
dropout_layer = Dropout(0.3)(prelu1_layer) | |
dense2_layer = Dense(256, activation="tanh")(dropout_layer) | |
dense3_layer = Dense(256, activation="relu")(dense2_layer) | |
dense4_layer = Dense(100, activation="tanh")(dense3_layer) | |
concat2_layer = Concatenate()([dense4_layer, prelu1_layer, attn_flatten_layer, conv1_flatten_layer]) | |
dense4_layer = Dense(resps_len, activation="softmax")(concat2_layer) | |
X = [] | |
y = [] | |
for key in dset: | |
for p in range(maxshift): | |
tokens = tokenizer.texts_to_sequences([key,])[0] | |
X.append(np.array(([0,]*p+list(tokens)+[0,]*inp_len)[:inp_len])) | |
output_array = np.zeros(resps_len) | |
output_array[dset[key]] = 1 | |
y.append(output_array) | |
X = np.array(X) | |
y = np.array(y) | |
model.compile(loss="categorical_crossentropy", metrics=["accuracy",]) | |
model.fit(X, y, epochs=10, batch_size=8, workers=4, use_multiprocessing=True) | |
model.save("{data_hash}.keras") | |
tokens = tokenizer.texts_to_sequences([message,])[0] | |
prediction = model.predict(np.array([(list(tokens)+[0,]*inp_len)[:inp_len],]))[0] | |
max_o = 0 | |
max_v = 0 | |
for ind, i in enumerate(prediction): | |
if max_v < i: | |
max_v = i | |
max_o = ind | |
return responses[ind] | |
iface = gr.Interface(fn=train, inputs=["text", "text"], outputs="text") | |
iface.launch() |