File size: 15,186 Bytes
7c4a89c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
import spaces
import functools
import os
import shutil
import sys
import git
import gradio as gr
import numpy as np
import torch as torch
from PIL import Image
from gradio_imageslider import ImageSlider
def process(
pipe,
path_input,
ensemble_size,
denoise_steps,
processing_res,
path_out_16bit=None,
path_out_fp32=None,
path_out_vis=None,
_input_3d_plane_near=None,
_input_3d_plane_far=None,
_input_3d_embossing=None,
_input_3d_filter_size=None,
_input_3d_frame_near=None,
):
if path_out_vis is not None:
return (
[path_out_16bit, path_out_vis],
[path_out_16bit, path_out_fp32, path_out_vis],
)
input_image = Image.open(path_input)
pipe_out = pipe(
input_image,
ensemble_size=ensemble_size,
denoising_steps=denoise_steps,
processing_res=processing_res,
batch_size=1 if processing_res == 0 else 0,
show_progress_bar=True,
)
depth_pred = pipe_out.depth_np
depth_colored = pipe_out.depth_colored
depth_16bit = (depth_pred * 65535.0).astype(np.uint16)
path_output_dir = os.path.splitext(path_input)[0] + "_output"
os.makedirs(path_output_dir, exist_ok=True)
name_base = os.path.splitext(os.path.basename(path_input))[0]
path_out_fp32 = os.path.join(path_output_dir, f"{name_base}_depth_fp32.npy")
path_out_16bit = os.path.join(path_output_dir, f"{name_base}_depth_16bit.png")
path_out_vis = os.path.join(path_output_dir, f"{name_base}_depth_colored.png")
np.save(path_out_fp32, depth_pred)
Image.fromarray(depth_16bit).save(path_out_16bit, mode="I;16")
depth_colored.save(path_out_vis)
return (
[path_out_16bit, path_out_vis],
[path_out_16bit, path_out_fp32, path_out_vis],
)
def run_demo_server(pipe):
process_pipe = functools.partial(process, pipe)
os.environ["GRADIO_ALLOW_FLAGGING"] = "never"
with gr.Blocks(
analytics_enabled=False,
title="Marigold Depth Estimation",
css="""
#download {
height: 118px;
}
.slider .inner {
width: 5px;
background: #FFF;
}
.viewport {
aspect-ratio: 4/3;
}
""",
) as demo:
gr.Markdown(
"""
<h1 align="center">Marigold Depth Estimation</h1>
<p align="center">
<a title="Website" href="https://marigoldmonodepth.github.io/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-website.svg">
</a>
<a title="arXiv" href="https://arxiv.org/abs/2312.02145" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-pdf.svg">
</a>
<a title="Github" href="https://github.com/prs-eth/marigold" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://img.shields.io/github/stars/prs-eth/marigold?label=GitHub%20%E2%98%85&logo=github&color=C8C" alt="badge-github-stars">
</a>
<a title="Social" href="https://twitter.com/antonobukhov1" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social">
</a>
</p>
<p align="justify">
Marigold is the new state-of-the-art depth estimator for images in the wild.
Upload your image into the <b>left</b> side, or click any of the <b>examples</b> below.
The result will be computed and appear on the <b>right</b> in the output comparison window.
<b style="color: red;">NEW</b>: Scroll down to the new 3D printing part of the demo!
</p>
"""
)
with gr.Row():
with gr.Column():
input_image = gr.Image(
label="Input Image",
type="filepath",
)
with gr.Accordion("Advanced options", open=False):
ensemble_size = gr.Slider(
label="Ensemble size",
minimum=1,
maximum=20,
step=1,
value=10,
)
denoise_steps = gr.Slider(
label="Number of denoising steps",
minimum=1,
maximum=20,
step=1,
value=10,
)
processing_res = gr.Radio(
[
("Native", 0),
("Recommended", 768),
],
label="Processing resolution",
value=768,
)
input_output_16bit = gr.File(
label="Predicted depth (16-bit)",
visible=False,
)
input_output_fp32 = gr.File(
label="Predicted depth (32-bit)",
visible=False,
)
input_output_vis = gr.File(
label="Predicted depth (red-near, blue-far)",
visible=False,
)
with gr.Row():
submit_btn = gr.Button(value="Compute Depth", variant="primary")
clear_btn = gr.Button(value="Clear")
with gr.Column():
output_slider = ImageSlider(
label="Predicted depth (red-near, blue-far)",
type="filepath",
show_download_button=True,
show_share_button=True,
interactive=False,
elem_classes="slider",
position=0.25,
)
files = gr.Files(
label="Depth outputs",
elem_id="download",
interactive=False,
)
demo_3d_header = gr.Markdown(
"""
<h3 align="center">3D Printing Depth Maps</h3>
<p align="justify">
This part of the demo uses Marigold depth maps estimated in the previous step to create a
3D-printable model. The models are watertight, with correct normals, and exported in the STL format.
We recommended creating the first model with the default parameters and iterating on it until the best
result (see Pro Tips below).
</p>
""",
render=False,
)
demo_3d = gr.Row(render=False)
with demo_3d:
with gr.Column():
with gr.Accordion("3D printing demo: Main options", open=True):
plane_near = gr.Slider(
label="Relative position of the near plane (between 0 and 1)",
minimum=0.0,
maximum=1.0,
step=0.001,
value=0.0,
)
plane_far = gr.Slider(
label="Relative position of the far plane (between near and 1)",
minimum=0.0,
maximum=1.0,
step=0.001,
value=1.0,
)
embossing = gr.Slider(
label="Embossing level",
minimum=0,
maximum=100,
step=1,
value=20,
)
with gr.Accordion("3D printing demo: Advanced options", open=False):
size_longest_px = gr.Slider(
label="Size (px) of the longest side",
minimum=256,
maximum=1024,
step=256,
value=512,
)
size_longest_cm = gr.Slider(
label="Size (cm) of the longest side",
minimum=1,
maximum=100,
step=1,
value=10,
)
filter_size = gr.Slider(
label="Size (px) of the smoothing filter",
minimum=1,
maximum=5,
step=2,
value=3,
)
frame_thickness = gr.Slider(
label="Frame thickness",
minimum=0,
maximum=100,
step=1,
value=5,
)
frame_near = gr.Slider(
label="Frame's near plane offset",
minimum=-100,
maximum=100,
step=1,
value=1,
)
frame_far = gr.Slider(
label="Frame's far plane offset",
minimum=1,
maximum=10,
step=1,
value=1,
)
with gr.Row():
submit_3d = gr.Button(value="Create 3D", variant="primary")
clear_3d = gr.Button(value="Clear 3D")
gr.Markdown(
"""
<h5 align="center">Pro Tips</h5>
<ol>
<li><b>Re-render with new parameters</b>: Click "Clear 3D" and then "Create 3D".</li>
<li><b>Adjust 3D scale and cut-off focus</b>: Set the frame's near plane offset to the
minimum and use 3D preview to evaluate depth scaling. Repeat until the scale is correct and
everything important is in the focus. Set the optimal value for frame's near
plane offset as a last step.</li>
<li><b>Increase details</b>: Decrease size of the smoothing filter (also increases noise).</li>
</ol>
"""
)
with gr.Column():
viewer_3d = gr.Model3D(
camera_position=(75.0, 90.0, 1.25),
elem_classes="viewport",
label="3D preview (low-res, relief highlight)",
interactive=False,
)
files_3d = gr.Files(
label="3D model outputs (high-res)",
elem_id="download",
interactive=False,
)
blocks_settings_depth = [ensemble_size, denoise_steps, processing_res]
blocks_settings_3d = [plane_near, plane_far, embossing, size_longest_px, size_longest_cm, filter_size,
frame_thickness, frame_near, frame_far]
blocks_settings = blocks_settings_depth + blocks_settings_3d
map_id_to_default = {b._id: b.value for b in blocks_settings}
inputs = [
input_image,
ensemble_size,
denoise_steps,
processing_res,
input_output_16bit,
input_output_fp32,
input_output_vis,
plane_near,
plane_far,
embossing,
filter_size,
frame_near,
]
outputs = [
submit_btn,
input_image,
output_slider,
files,
]
def submit_depth_fn(*args):
out = list(process_pipe(*args))
out = [gr.Button(interactive=False), gr.Image(interactive=False)] + out
return out
submit_btn.click(
fn=submit_depth_fn,
inputs=inputs,
outputs=outputs,
concurrency_limit=1,
)
gr.Examples(
fn=submit_depth_fn,
examples=[
[
"files/bee.jpg",
10, # ensemble_size
10, # denoise_steps
768, # processing_res
"files/bee_depth_16bit.png",
"files/bee_depth_fp32.npy",
"files/bee_depth_colored.png",
0.0, # plane_near
0.5, # plane_far
20, # embossing
3, # filter_size
0, # frame_near
],
],
inputs=inputs,
outputs=outputs,
cache_examples=True,
)
demo_3d_header.render()
demo_3d.render()
def clear_fn():
out = []
for b in blocks_settings:
out.append(map_id_to_default[b._id])
out += [
gr.Button(interactive=True),
gr.Button(interactive=True),
gr.Image(value=None, interactive=True),
None, None, None, None, None, None, None,
]
return out
clear_btn.click(
fn=clear_fn,
inputs=[],
outputs=blocks_settings + [
submit_btn,
submit_3d,
input_image,
input_output_16bit,
input_output_fp32,
input_output_vis,
output_slider,
files,
viewer_3d,
files_3d,
],
)
demo.queue(
api_open=False,
).launch(
server_name="0.0.0.0",
server_port=7860,
)
def prefetch_hf_cache(pipe):
process(pipe, "files/bee.jpg", 1, 1, 64)
shutil.rmtree("files/bee_output")
def main():
REPO_URL = "https://github.com/lemonaddie/geowizard.git"
CHECKPOINT = "lemonaddie/Geowizard"
REPO_DIR = "geowizard"
if os.path.isdir(REPO_DIR):
shutil.rmtree(REPO_DIR)
repo = git.Repo.clone_from(REPO_URL, REPO_DIR)
sys.path.append(os.path.join(os.getcwd(), REPO_DIR))
from pipeline.depth_normal_pipeline_clip_cfg import DepthNormalEstimationPipeline
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
pipe = DepthNormalEstimationPipeline.from_pretrained(CHECKPOINT)
try:
import xformers
pipe.enable_xformers_memory_efficient_attention()
except:
pass # run without xformers
pipe = pipe.to(device)
try:
import xformers
pipe.enable_xformers_memory_efficient_attention()
except:
pass # run without xformers
pipe = pipe.to(device)
prefetch_hf_cache(pipe)
run_demo_server(pipe)
if __name__ == "__main__":
main()
|