File size: 8,458 Bytes
8e0bf0b 9c130b3 8e0bf0b 4ea140d 8e0bf0b b1b258e 8e0bf0b b1b258e 8e0bf0b b1b258e 8e0bf0b ecc4df6 8e0bf0b ecc4df6 8e0bf0b c32d0ce 0d4e8fc 8e0bf0b c32d0ce 8e0bf0b 2afefb7 8e0bf0b 826223e db72d60 8e0bf0b db72d60 8e0bf0b db72d60 8e0bf0b db72d60 8e0bf0b db72d60 8e0bf0b 5f0d3d8 c78bfdd c32d0ce 279855a c32d0ce b1b258e c32d0ce 8e0bf0b 4e4a450 aa7a82a 904d41c cfc0ae6 9f7b69e 8e0bf0b 279855a 3324530 4e4a450 8e0bf0b cfc0ae6 8e0bf0b 6ce55a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
import functools
import os
import shutil
import sys
import git
import gradio as gr
import numpy as np
import torch as torch
from PIL import Image
from gradio_imageslider import ImageSlider
import spaces
def process(
pipe,
path_input,
ensemble_size,
denoise_steps,
processing_res,
path_out_16bit=None,
path_out_fp32=None,
path_out_vis=None,
):
print('4424')
if path_out_vis is not None:
return (
[path_out_16bit, path_out_vis],
[path_out_16bit, path_out_fp32, path_out_vis],
)
print('44a4')
input_image = Image.open(path_input)
print('55b5')
print('aaa')
pipe_out = pipe(
input_image,
ensemble_size=ensemble_size,
denoising_steps=denoise_steps,
processing_res=processing_res,
batch_size=1 if processing_res == 0 else 0,
show_progress_bar=True,
)
print('bbb')
depth_pred = pipe_out.depth_np
depth_colored = pipe_out.depth_colored
depth_16bit = (depth_pred * 65535.0).astype(np.uint16)
path_output_dir = os.path.splitext(path_input)[0] + "_output"
os.makedirs(path_output_dir, exist_ok=True)
name_base = os.path.splitext(os.path.basename(path_input))[0]
path_out_fp32 = os.path.join(path_output_dir, f"{name_base}_depth_fp32.npy")
path_out_16bit = os.path.join(path_output_dir, f"{name_base}_depth_16bit.png")
path_out_vis = os.path.join(path_output_dir, f"{name_base}_depth_colored.png")
np.save(path_out_fp32, depth_pred)
Image.fromarray(depth_16bit).save(path_out_16bit, mode="I;16")
depth_colored.save(path_out_vis)
return (
[path_out_16bit, path_out_vis],
[path_out_16bit, path_out_fp32, path_out_vis],
)
@spaces.GPU
def run_demo_server(pipe):
process_pipe = functools.partial(process, pipe)
os.environ["GRADIO_ALLOW_FLAGGING"] = "never"
with gr.Blocks(
analytics_enabled=False,
title="GeoWizard Depth and Normal Estimation",
css="""
#download {
height: 118px;
}
.slider .inner {
width: 5px;
background: #FFF;
}
.viewport {
aspect-ratio: 4/3;
}
""",
) as demo:
gr.Markdown(
"""
<h1 align="center">Geowizard Depth & Normal Estimation</h1>
"""
)
with gr.Row():
with gr.Column():
input_image = gr.Image(
label="Input Image",
type="filepath",
)
with gr.Accordion("Advanced options", open=False):
processing_res = gr.Radio(
[
("Outdoor", "outdoor"),
("Indoor", "indoor"),
("Object", "object"),
],
label="Data Domain",
value="indoor",
)
denoise_steps = gr.Slider(
label="Classifier Free Guidance Scale",
minimum=1,
maximum=5,
step=1,
value=3,
)
denoise_steps = gr.Slider(
label="Number of denoising steps",
minimum=1,
maximum=20,
step=1,
value=10,
)
ensemble_size = gr.Slider(
label="Ensemble size",
minimum=1,
maximum=15,
step=1,
value=1,
)
processing_res = gr.Radio(
[
("Native", 0),
("Recommended", 768),
],
label="Processing resolution",
value=768,
)
input_output_16bit = gr.File(
label="Predicted depth (16-bit)",
visible=False,
)
input_output_fp32 = gr.File(
label="Predicted depth (32-bit)",
visible=False,
)
input_output_vis = gr.File(
label="Predicted depth (red-near, blue-far)",
visible=False,
)
with gr.Row():
submit_btn = gr.Button(value="Compute Depth", variant="primary")
clear_btn = gr.Button(value="Clear")
with gr.Column():
output_slider = ImageSlider(
label="Predicted depth (red-near, blue-far)",
type="filepath",
show_download_button=True,
show_share_button=True,
interactive=False,
elem_classes="slider",
position=0.25,
)
files = gr.Files(
label="Depth outputs",
elem_id="download",
interactive=False,
)
blocks_settings_depth = [ensemble_size, denoise_steps, processing_res]
blocks_settings = blocks_settings_depth
map_id_to_default = {b._id: b.value for b in blocks_settings}
inputs = [
input_image,
ensemble_size,
denoise_steps,
processing_res,
input_output_16bit,
input_output_fp32,
input_output_vis,
]
outputs = [
submit_btn,
input_image,
output_slider,
files,
]
def submit_depth_fn(*args):
print('args')
out = list(process_pipe(*args))
out = [gr.Button(interactive=False), gr.Image(interactive=False)] + out
return out
submit_btn.click(
fn=submit_depth_fn,
inputs=inputs,
outputs=outputs,
concurrency_limit=1,
)
gr.Examples(
fn=submit_depth_fn,
examples=[
[
"files/bee.jpg",
10, # ensemble_size
10, # denoise_steps
768, # processing_res
"files/bee_depth_16bit.png",
"files/bee_depth_fp32.npy",
"files/bee_depth_colored.png",
],
],
inputs=inputs,
outputs=outputs,
cache_examples=True,
)
def clear_fn():
out = []
for b in blocks_settings:
out.append(map_id_to_default[b._id])
out += [
gr.Button(interactive=True),
gr.Image(value=None, interactive=True),
None, None, None, None, None, None, None,
]
return out
clear_btn.click(
fn=clear_fn,
inputs=[],
outputs=blocks_settings + [
submit_btn,
input_image,
input_output_16bit,
input_output_fp32,
input_output_vis,
output_slider,
files,
],
)
demo.queue(
api_open=False,
).launch(
server_name="0.0.0.0",
server_port=7860,
)
def main():
REPO_URL = "https://github.com/lemonaddie/geowizard.git"
CHECKPOINT = "lemonaddie/Geowizard"
REPO_DIR = "geowizard"
if os.path.isdir(REPO_DIR):
shutil.rmtree(REPO_DIR)
repo = git.Repo.clone_from(REPO_URL, REPO_DIR)
sys.path.append(os.path.join(os.getcwd(), REPO_DIR))
from pipeline.depth_normal_pipeline_clip_cfg import DepthNormalEstimationPipeline
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
pipe = DepthNormalEstimationPipeline.from_pretrained(CHECKPOINT)
try:
import xformers
pipe.enable_xformers_memory_efficient_attention()
except:
pass # run without xformers
pipe = pipe.to(device)
run_demo_server(pipe)
if __name__ == "__main__":
main()
|