|
|
|
|
|
import torch |
|
import math |
|
|
|
|
|
|
|
bs_search_table = [ |
|
|
|
{"res": 768, "total_vram": 79, "bs": 35, "dtype": torch.float32}, |
|
{"res": 1024, "total_vram": 79, "bs": 20, "dtype": torch.float32}, |
|
|
|
{"res": 768, "total_vram": 39, "bs": 15, "dtype": torch.float32}, |
|
{"res": 1024, "total_vram": 39, "bs": 8, "dtype": torch.float32}, |
|
{"res": 768, "total_vram": 39, "bs": 30, "dtype": torch.float16}, |
|
{"res": 1024, "total_vram": 39, "bs": 15, "dtype": torch.float16}, |
|
|
|
{"res": 512, "total_vram": 23, "bs": 20, "dtype": torch.float32}, |
|
{"res": 768, "total_vram": 23, "bs": 7, "dtype": torch.float32}, |
|
{"res": 1024, "total_vram": 23, "bs": 3, "dtype": torch.float32}, |
|
{"res": 512, "total_vram": 23, "bs": 40, "dtype": torch.float16}, |
|
{"res": 768, "total_vram": 23, "bs": 18, "dtype": torch.float16}, |
|
{"res": 1024, "total_vram": 23, "bs": 10, "dtype": torch.float16}, |
|
|
|
{"res": 512, "total_vram": 10, "bs": 5, "dtype": torch.float32}, |
|
{"res": 768, "total_vram": 10, "bs": 2, "dtype": torch.float32}, |
|
{"res": 512, "total_vram": 10, "bs": 10, "dtype": torch.float16}, |
|
{"res": 768, "total_vram": 10, "bs": 5, "dtype": torch.float16}, |
|
{"res": 1024, "total_vram": 10, "bs": 3, "dtype": torch.float16}, |
|
] |
|
|
|
|
|
def find_batch_size(ensemble_size: int, input_res: int, dtype: torch.dtype) -> int: |
|
""" |
|
Automatically search for suitable operating batch size. |
|
|
|
Args: |
|
ensemble_size (`int`): |
|
Number of predictions to be ensembled. |
|
input_res (`int`): |
|
Operating resolution of the input image. |
|
|
|
Returns: |
|
`int`: Operating batch size. |
|
""" |
|
if not torch.cuda.is_available(): |
|
return 1 |
|
|
|
total_vram = torch.cuda.mem_get_info()[1] / 1024.0**3 |
|
filtered_bs_search_table = [s for s in bs_search_table if s["dtype"] == dtype] |
|
for settings in sorted( |
|
filtered_bs_search_table, |
|
key=lambda k: (k["res"], -k["total_vram"]), |
|
): |
|
if input_res <= settings["res"] and total_vram >= settings["total_vram"]: |
|
bs = settings["bs"] |
|
if bs > ensemble_size: |
|
bs = ensemble_size |
|
elif bs > math.ceil(ensemble_size / 2) and bs < ensemble_size: |
|
bs = math.ceil(ensemble_size / 2) |
|
return bs |
|
|
|
return 1 |