|
import functools |
|
import os |
|
import shutil |
|
import sys |
|
import git |
|
|
|
import gradio as gr |
|
import numpy as np |
|
import torch as torch |
|
from PIL import Image |
|
|
|
from gradio_imageslider import ImageSlider |
|
|
|
import spaces |
|
|
|
import fire |
|
|
|
import argparse |
|
import os |
|
import logging |
|
|
|
import numpy as np |
|
import torch |
|
from PIL import Image |
|
from tqdm.auto import tqdm |
|
import glob |
|
import json |
|
import cv2 |
|
|
|
import sys |
|
sys.path.append("../") |
|
from models.depth_normal_pipeline_clip import DepthNormalEstimationPipeline |
|
from utils.seed_all import seed_all |
|
import matplotlib.pyplot as plt |
|
from utils.de_normalized import align_scale_shift |
|
from utils.depth2normal import * |
|
|
|
from diffusers import DiffusionPipeline, DDIMScheduler, AutoencoderKL |
|
from models.unet_2d_condition import UNet2DConditionModel |
|
|
|
from transformers import CLIPTextModel, CLIPTokenizer |
|
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection |
|
import torchvision.transforms.functional as TF |
|
from torchvision.transforms import InterpolationMode |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
vae = AutoencoderKL.from_pretrained('.', subfolder='vae') |
|
scheduler = DDIMScheduler.from_pretrained('.', subfolder='scheduler') |
|
image_encoder = CLIPVisionModelWithProjection.from_pretrained('.', subfolder="image_encoder") |
|
feature_extractor = CLIPImageProcessor.from_pretrained('.', subfolder="feature_extractor") |
|
unet = UNet2DConditionModel.from_pretrained('.', subfolder="unet7000") |
|
|
|
pipe = DepthNormalEstimationPipeline(vae=vae, |
|
image_encoder=image_encoder, |
|
feature_extractor=feature_extractor, |
|
unet=unet, |
|
scheduler=scheduler) |
|
|
|
try: |
|
import xformers |
|
pipe.enable_xformers_memory_efficient_attention() |
|
except: |
|
pass |
|
|
|
pipe = pipe.to(device) |
|
|
|
@spaces.GPU |
|
def depth_normal(img, |
|
denoising_steps, |
|
ensemble_size, |
|
processing_res, |
|
seed, |
|
domain): |
|
|
|
seed = int(seed) |
|
|
|
|
|
pipe_out = pipe( |
|
img, |
|
denoising_steps=denoising_steps, |
|
ensemble_size=ensemble_size, |
|
processing_res=processing_res, |
|
batch_size=0, |
|
domain=domain, |
|
seed = seed, |
|
show_progress_bar=True, |
|
) |
|
|
|
depth_colored = pipe_out.depth_colored |
|
normal_colored = pipe_out.normal_colored |
|
|
|
return depth_colored, normal_colored |
|
|
|
|
|
|
|
def run_demo(): |
|
|
|
|
|
custom_theme = gr.themes.Soft(primary_hue="blue").set( |
|
button_secondary_background_fill="*neutral_100", |
|
button_secondary_background_fill_hover="*neutral_200") |
|
custom_css = '''#disp_image { |
|
text-align: center; /* Horizontally center the content */ |
|
}''' |
|
|
|
_TITLE = '''GeoWizard: Unleashing the Diffusion Priors for 3D Geometry Estimation from a Single Image''' |
|
_DESCRIPTION = ''' |
|
<div> |
|
Generate consistent depth and normal from single image. High quality and rich details. |
|
<a style="display:inline-block; margin-left: .5em" href='https://github.com/fuxiao0719/GeoWizard/'><img src='https://img.shields.io/github/stars/fuxiao0719/GeoWizard?style=social' /></a> |
|
</div> |
|
''' |
|
_GPU_ID = 0 |
|
|
|
with gr.Blocks(title=_TITLE, theme=custom_theme, css=custom_css) as demo: |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
gr.Markdown('# ' + _TITLE) |
|
gr.Markdown(_DESCRIPTION) |
|
with gr.Row(variant='panel'): |
|
with gr.Column(scale=1): |
|
input_image = gr.Image(type='pil', image_mode='RGBA', height=320, label='Input image') |
|
|
|
example_folder = os.path.join(os.path.dirname(__file__), "./files") |
|
example_fns = [os.path.join(example_folder, example) for example in os.listdir(example_folder)] |
|
gr.Examples( |
|
examples=example_fns, |
|
inputs=[input_image], |
|
cache_examples=False, |
|
label='Examples (click one of the images below to start)', |
|
examples_per_page=30 |
|
) |
|
with gr.Column(scale=1): |
|
|
|
with gr.Accordion('Advanced options', open=True): |
|
with gr.Column(): |
|
|
|
domain = gr.Radio( |
|
[ |
|
("Outdoor", "outdoor"), |
|
("Indoor", "indoor"), |
|
("Object", "object"), |
|
], |
|
label="Data Type (Must Select One matches your image)", |
|
value="indoor", |
|
) |
|
denoising_steps = gr.Slider( |
|
label="Number of denoising steps (More steps, better quality)", |
|
minimum=1, |
|
maximum=50, |
|
step=1, |
|
value=10, |
|
) |
|
ensemble_size = gr.Slider( |
|
label="Ensemble size (1 will be enough. More steps, higher accuracy)", |
|
minimum=1, |
|
maximum=15, |
|
step=1, |
|
value=4, |
|
) |
|
seed = gr.Number(0, label='Random Seed. Negative values for not specifying') |
|
|
|
processing_res = gr.Radio( |
|
[ |
|
("Native", 0), |
|
("Recommended", 768), |
|
], |
|
label="Processing resolution", |
|
value=768, |
|
) |
|
|
|
|
|
run_btn = gr.Button('Generate', variant='primary', interactive=True) |
|
with gr.Row(): |
|
with gr.Column(): |
|
depth = gr.Image(interactive=False, show_label=False) |
|
with gr.Column(): |
|
normal = gr.Image(interactive=False, show_label=False) |
|
|
|
|
|
run_btn.click(fn=depth_normal, |
|
inputs=[input_image, denoising_steps, |
|
ensemble_size, |
|
processing_res, |
|
seed, |
|
domain], |
|
outputs=[depth, normal] |
|
) |
|
demo.queue().launch(share=True, max_threads=80) |
|
|
|
|
|
if __name__ == '__main__': |
|
fire.Fire(run_demo) |
|
|