|
import functools |
|
import os |
|
import shutil |
|
import sys |
|
import git |
|
|
|
import gradio as gr |
|
import numpy as np |
|
import torch as torch |
|
from PIL import Image |
|
|
|
from gradio_imageslider import ImageSlider |
|
|
|
import spaces |
|
|
|
def process( |
|
pipe, |
|
path_input, |
|
ensemble_size, |
|
denoise_steps, |
|
processing_res, |
|
path_out_16bit=None, |
|
path_out_fp32=None, |
|
path_out_vis=None, |
|
): |
|
if path_out_vis is not None: |
|
return ( |
|
[path_out_16bit, path_out_vis], |
|
[path_out_16bit, path_out_fp32, path_out_vis], |
|
) |
|
|
|
input_image = Image.open(path_input) |
|
|
|
pipe_out = pipe( |
|
input_image, |
|
ensemble_size=ensemble_size, |
|
denoising_steps=denoise_steps, |
|
processing_res=processing_res, |
|
batch_size=1 if processing_res == 0 else 0, |
|
show_progress_bar=True, |
|
) |
|
|
|
depth_pred = pipe_out.depth_np |
|
depth_colored = pipe_out.depth_colored |
|
depth_16bit = (depth_pred * 65535.0).astype(np.uint16) |
|
|
|
path_output_dir = os.path.splitext(path_input)[0] + "_output" |
|
os.makedirs(path_output_dir, exist_ok=True) |
|
|
|
name_base = os.path.splitext(os.path.basename(path_input))[0] |
|
path_out_fp32 = os.path.join(path_output_dir, f"{name_base}_depth_fp32.npy") |
|
path_out_16bit = os.path.join(path_output_dir, f"{name_base}_depth_16bit.png") |
|
path_out_vis = os.path.join(path_output_dir, f"{name_base}_depth_colored.png") |
|
|
|
np.save(path_out_fp32, depth_pred) |
|
Image.fromarray(depth_16bit).save(path_out_16bit, mode="I;16") |
|
depth_colored.save(path_out_vis) |
|
|
|
return ( |
|
[path_out_16bit, path_out_vis], |
|
[path_out_16bit, path_out_fp32, path_out_vis], |
|
) |
|
|
|
|
|
@spaces.GPU |
|
def run_demo_server(pipe): |
|
process_pipe = functools.partial(process, pipe) |
|
os.environ["GRADIO_ALLOW_FLAGGING"] = "never" |
|
|
|
with gr.Blocks( |
|
analytics_enabled=False, |
|
title="Marigold Depth Estimation", |
|
css=""" |
|
#download { |
|
height: 118px; |
|
} |
|
.slider .inner { |
|
width: 5px; |
|
background: #FFF; |
|
} |
|
.viewport { |
|
aspect-ratio: 4/3; |
|
} |
|
""", |
|
) as demo: |
|
gr.Markdown( |
|
""" |
|
<h1 align="center">Geowizard Estimation</h1> |
|
""" |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
input_image = gr.Image( |
|
label="Input Image", |
|
type="filepath", |
|
) |
|
with gr.Accordion("Advanced options", open=False): |
|
ensemble_size = gr.Slider( |
|
label="Ensemble size", |
|
minimum=1, |
|
maximum=20, |
|
step=1, |
|
value=10, |
|
) |
|
denoise_steps = gr.Slider( |
|
label="Number of denoising steps", |
|
minimum=1, |
|
maximum=20, |
|
step=1, |
|
value=10, |
|
) |
|
processing_res = gr.Radio( |
|
[ |
|
("Native", 0), |
|
("Recommended", 768), |
|
], |
|
label="Processing resolution", |
|
value=768, |
|
) |
|
input_output_16bit = gr.File( |
|
label="Predicted depth (16-bit)", |
|
visible=False, |
|
) |
|
input_output_fp32 = gr.File( |
|
label="Predicted depth (32-bit)", |
|
visible=False, |
|
) |
|
input_output_vis = gr.File( |
|
label="Predicted depth (red-near, blue-far)", |
|
visible=False, |
|
) |
|
with gr.Row(): |
|
submit_btn = gr.Button(value="Compute Depth", variant="primary") |
|
clear_btn = gr.Button(value="Clear") |
|
with gr.Column(): |
|
output_slider = ImageSlider( |
|
label="Predicted depth (red-near, blue-far)", |
|
type="filepath", |
|
show_download_button=True, |
|
show_share_button=True, |
|
interactive=False, |
|
elem_classes="slider", |
|
position=0.25, |
|
) |
|
files = gr.Files( |
|
label="Depth outputs", |
|
elem_id="download", |
|
interactive=False, |
|
) |
|
|
|
demo_3d_header = gr.Markdown( |
|
""" |
|
<h3 align="center">3D Printing Depth Maps</h3> |
|
<p align="justify"> |
|
This part of the demo uses Marigold depth maps estimated in the previous step to create a |
|
3D-printable model. The models are watertight, with correct normals, and exported in the STL format. |
|
We recommended creating the first model with the default parameters and iterating on it until the best |
|
result (see Pro Tips below). |
|
</p> |
|
""", |
|
render=False, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
blocks_settings_depth = [ensemble_size, denoise_steps, processing_res] |
|
|
|
|
|
|
|
blocks_settings = blocks_settings_depth |
|
map_id_to_default = {b._id: b.value for b in blocks_settings} |
|
|
|
inputs = [ |
|
input_image, |
|
ensemble_size, |
|
denoise_steps, |
|
processing_res, |
|
input_output_16bit, |
|
input_output_fp32, |
|
input_output_vis, |
|
|
|
|
|
|
|
|
|
|
|
] |
|
outputs = [ |
|
submit_btn, |
|
input_image, |
|
output_slider, |
|
files, |
|
] |
|
|
|
def submit_depth_fn(*args): |
|
print(111) |
|
out = list(process_pipe(*args)) |
|
out = [gr.Button(interactive=False), gr.Image(interactive=False)] + out |
|
return out |
|
|
|
submit_btn.click( |
|
fn=submit_depth_fn, |
|
inputs=inputs, |
|
outputs=outputs, |
|
concurrency_limit=1, |
|
) |
|
|
|
gr.Examples( |
|
fn=submit_depth_fn, |
|
examples=[ |
|
[ |
|
"files/bee.jpg", |
|
10, |
|
10, |
|
768, |
|
"files/bee_depth_16bit.png", |
|
"files/bee_depth_fp32.npy", |
|
"files/bee_depth_colored.png", |
|
|
|
|
|
|
|
|
|
|
|
], |
|
], |
|
inputs=inputs, |
|
outputs=outputs, |
|
cache_examples=True, |
|
) |
|
|
|
|
|
|
|
|
|
def clear_fn(): |
|
out = [] |
|
for b in blocks_settings: |
|
out.append(map_id_to_default[b._id]) |
|
out += [ |
|
gr.Button(interactive=True), |
|
|
|
gr.Image(value=None, interactive=True), |
|
None, None, None, None, None, None, None, |
|
] |
|
return out |
|
|
|
clear_btn.click( |
|
fn=clear_fn, |
|
inputs=[], |
|
outputs=blocks_settings + [ |
|
submit_btn, |
|
|
|
input_image, |
|
input_output_16bit, |
|
input_output_fp32, |
|
input_output_vis, |
|
output_slider, |
|
files, |
|
|
|
|
|
], |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
demo.queue( |
|
api_open=False, |
|
).launch( |
|
server_name="0.0.0.0", |
|
server_port=7860, |
|
) |
|
|
|
|
|
|
|
|
|
def main(): |
|
|
|
REPO_URL = "https://github.com/lemonaddie/geowizard.git" |
|
CHECKPOINT = "lemonaddie/Geowizard" |
|
REPO_DIR = "geowizard" |
|
|
|
if os.path.isdir(REPO_DIR): |
|
shutil.rmtree(REPO_DIR) |
|
|
|
repo = git.Repo.clone_from(REPO_URL, REPO_DIR) |
|
sys.path.append(os.path.join(os.getcwd(), REPO_DIR)) |
|
|
|
|
|
from pipeline.depth_normal_pipeline_clip_cfg import DepthNormalEstimationPipeline |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
pipe = DepthNormalEstimationPipeline.from_pretrained(CHECKPOINT) |
|
|
|
try: |
|
import xformers |
|
pipe.enable_xformers_memory_efficient_attention() |
|
except: |
|
pass |
|
|
|
pipe = pipe.to(device) |
|
|
|
run_demo_server(pipe) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|
|
|