geowizard / app1.py
lemonaddie's picture
Update app1.py
c95521f verified
raw
history blame
5.3 kB
import functools
import os
import shutil
import sys
import git
import gradio as gr
import numpy as np
import torch as torch
from PIL import Image
from gradio_imageslider import ImageSlider
import spaces
import fire
REPO_URL = "https://github.com/lemonaddie/geowizard.git"
CHECKPOINT = "lemonaddie/Geowizard"
REPO_DIR = "geowizard"
if os.path.isdir(REPO_DIR):
shutil.rmtree(REPO_DIR)
repo = git.Repo.clone_from(REPO_URL, REPO_DIR)
sys.path.append(os.path.join(os.getcwd(), REPO_DIR))
from pipeline.depth_normal_pipeline_clip_cfg import DepthNormalEstimationPipeline
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
pipe = DepthNormalEstimationPipeline.from_pretrained(CHECKPOINT)
try:
import xformers
pipe.enable_xformers_memory_efficient_attention()
except:
pass # run without xformers
pipe = pipe.to(device)
#run_demo_server(pipe)
@spaces.GPU
def depth_normal(img,
denoising_steps,
ensemble_size,
processing_res,
guidance_scale,
domain):
img = img.resize((processing_res, processing_res), Image.Resampling.LANCZOS)
pipe_out = pipe(
img,
denoising_steps=denoising_steps,
ensemble_size=ensemble_size,
processing_res=processing_res,
batch_size=0,
guidance_scale=guidance_scale,
domain=domain,
show_progress_bar=True,
)
depth_colored = pipe_out.depth_colored
normal_colored = pipe_out.normal_colored
return depth_colored, normal_colored
def run_demo():
custom_theme = gr.themes.Soft(primary_hue="blue").set(
button_secondary_background_fill="*neutral_100",
button_secondary_background_fill_hover="*neutral_200")
custom_css = '''#disp_image {
text-align: center; /* Horizontally center the content */
}'''
with gr.Blocks(title=_TITLE, theme=custom_theme, css=custom_css) as demo:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown('# ' + _TITLE)
gr.Markdown(_DESCRIPTION)
with gr.Row(variant='panel'):
with gr.Column(scale=1):
input_image = gr.Image(type='pil', image_mode='RGBA', height=320, label='Input image', tool=None)
example_folder = os.path.join(os.path.dirname(__file__), "./files")
example_fns = [os.path.join(example_folder, example) for example in os.listdir(example_folder)]
gr.Examples(
examples=example_fns,
inputs=[input_image],
# outputs=[input_image],
cache_examples=False,
label='Examples (click one of the images below to start)',
examples_per_page=30
)
with gr.Column(scale=1):
with gr.Accordion('Advanced options', open=True):
with gr.Row():
domain = gr.Radio(
[
("Outdoor", "outdoor"),
("Indoor", "indoor"),
("Object", "object"),
],
label="Data Domain",
value="indoor",
)
guidance_scale = gr.Slider(
label="Classifier Free Guidance Scale",
minimum=1,
maximum=5,
step=1,
value=3,
)
denoise_steps = gr.Slider(
label="Number of denoising steps",
minimum=1,
maximum=20,
step=1,
value=10,
)
ensemble_size = gr.Slider(
label="Ensemble size",
minimum=1,
maximum=15,
step=1,
value=1,
)
processing_res = gr.Radio(
[
("Native", 0),
("Recommended", 768),
],
label="Processing resolution",
value=768,
)
run_btn = gr.Button('Generate', variant='primary', interactive=True)
with gr.Row():
depth = gr.Image(interactive=False, height=384, show_label=False)
with gr.Row():
normal = gr.Image(interactive=False, height=384, show_label=False)
run_btn.success(fn=partial(depth_normal),
inputs=[input_image, denoising_steps,
ensemble_size,
processing_res,
guidance_scale,
domain],
outputs=[depth, normal]
)
demo.queue().launch(share=True, max_threads=80)
if __name__ == '__main__':
fire.Fire(run_demo)