Delete models/depth_normal_pipeline.py
Browse files- models/depth_normal_pipeline.py +0 -361
models/depth_normal_pipeline.py
DELETED
|
@@ -1,361 +0,0 @@
|
|
| 1 |
-
# A reimplemented version in public environments by Xiao Fu and Mu Hu
|
| 2 |
-
|
| 3 |
-
from typing import Any, Dict, Union
|
| 4 |
-
|
| 5 |
-
import torch
|
| 6 |
-
from torch.utils.data import DataLoader, TensorDataset
|
| 7 |
-
import numpy as np
|
| 8 |
-
from tqdm.auto import tqdm
|
| 9 |
-
from PIL import Image
|
| 10 |
-
from diffusers import (
|
| 11 |
-
DiffusionPipeline,
|
| 12 |
-
DDIMScheduler,
|
| 13 |
-
AutoencoderKL,
|
| 14 |
-
)
|
| 15 |
-
from models.unet_2d_condition import UNet2DConditionModel
|
| 16 |
-
from diffusers.utils import BaseOutput
|
| 17 |
-
from transformers import CLIPTextModel, CLIPTokenizer
|
| 18 |
-
|
| 19 |
-
from utils.image_util import resize_max_res,chw2hwc,colorize_depth_maps
|
| 20 |
-
from utils.colormap import kitti_colormap
|
| 21 |
-
from utils.depth_ensemble import ensemble_depths
|
| 22 |
-
from utils.batch_size import find_batch_size
|
| 23 |
-
import cv2
|
| 24 |
-
|
| 25 |
-
class DepthNormalPipelineOutput(BaseOutput):
|
| 26 |
-
"""
|
| 27 |
-
Output class for Marigold monocular depth prediction pipeline.
|
| 28 |
-
|
| 29 |
-
Args:
|
| 30 |
-
depth_np (`np.ndarray`):
|
| 31 |
-
Predicted depth map, with depth values in the range of [0, 1].
|
| 32 |
-
depth_colored (`PIL.Image.Image`):
|
| 33 |
-
Colorized depth map, with the shape of [3, H, W] and values in [0, 1].
|
| 34 |
-
normal_np (`np.ndarray`):
|
| 35 |
-
Predicted normal map, with depth values in the range of [0, 1].
|
| 36 |
-
normal_colored (`PIL.Image.Image`):
|
| 37 |
-
Colorized normal map, with the shape of [3, H, W] and values in [0, 1].
|
| 38 |
-
uncertainty (`None` or `np.ndarray`):
|
| 39 |
-
Uncalibrated uncertainty(MAD, median absolute deviation) coming from ensembling.
|
| 40 |
-
"""
|
| 41 |
-
depth_np: np.ndarray
|
| 42 |
-
depth_colored: Image.Image
|
| 43 |
-
normal_np: np.ndarray
|
| 44 |
-
normal_colored: Image.Image
|
| 45 |
-
uncertainty: Union[None, np.ndarray]
|
| 46 |
-
|
| 47 |
-
class DepthNormalEstimationPipeline(DiffusionPipeline):
|
| 48 |
-
# two hyper-parameters
|
| 49 |
-
latent_scale_factor = 0.18215
|
| 50 |
-
|
| 51 |
-
def __init__(self,
|
| 52 |
-
unet:UNet2DConditionModel,
|
| 53 |
-
vae:AutoencoderKL,
|
| 54 |
-
scheduler:DDIMScheduler,
|
| 55 |
-
text_encoder:CLIPTextModel,
|
| 56 |
-
tokenizer:CLIPTokenizer,
|
| 57 |
-
):
|
| 58 |
-
super().__init__()
|
| 59 |
-
|
| 60 |
-
self.register_modules(
|
| 61 |
-
unet=unet,
|
| 62 |
-
vae=vae,
|
| 63 |
-
scheduler=scheduler,
|
| 64 |
-
text_encoder=text_encoder,
|
| 65 |
-
tokenizer=tokenizer,
|
| 66 |
-
)
|
| 67 |
-
self.empty_text_embed = None
|
| 68 |
-
|
| 69 |
-
@torch.no_grad()
|
| 70 |
-
def __call__(self,
|
| 71 |
-
input_image:Image,
|
| 72 |
-
denoising_steps: int = 10,
|
| 73 |
-
ensemble_size: int = 10,
|
| 74 |
-
processing_res: int = 768,
|
| 75 |
-
match_input_res:bool =True,
|
| 76 |
-
batch_size:int = 0,
|
| 77 |
-
domain: str = "indoor",
|
| 78 |
-
color_map: str="Spectral",
|
| 79 |
-
show_progress_bar:bool = True,
|
| 80 |
-
ensemble_kwargs: Dict = None,
|
| 81 |
-
) -> DepthNormalPipelineOutput:
|
| 82 |
-
|
| 83 |
-
# inherit from thea Diffusion Pipeline
|
| 84 |
-
device = self.device
|
| 85 |
-
input_size = input_image.size
|
| 86 |
-
|
| 87 |
-
# adjust the input resolution.
|
| 88 |
-
if not match_input_res:
|
| 89 |
-
assert (
|
| 90 |
-
processing_res is not None
|
| 91 |
-
)," Value Error: `resize_output_back` is only valid with "
|
| 92 |
-
|
| 93 |
-
assert processing_res >=0
|
| 94 |
-
assert denoising_steps >=1
|
| 95 |
-
assert ensemble_size >=1
|
| 96 |
-
|
| 97 |
-
# --------------- Image Processing ------------------------
|
| 98 |
-
# Resize image
|
| 99 |
-
if processing_res >0:
|
| 100 |
-
input_image = resize_max_res(
|
| 101 |
-
input_image, max_edge_resolution=processing_res
|
| 102 |
-
)
|
| 103 |
-
|
| 104 |
-
# Convert the image to RGB, to 1. reomve the alpha channel.
|
| 105 |
-
input_image = input_image.convert("RGB")
|
| 106 |
-
image = np.array(input_image)
|
| 107 |
-
|
| 108 |
-
# Normalize RGB Values.
|
| 109 |
-
rgb = np.transpose(image,(2,0,1))
|
| 110 |
-
rgb_norm = rgb / 255.0 * 2.0 - 1.0 # [0, 255] -> [-1, 1]
|
| 111 |
-
rgb_norm = torch.from_numpy(rgb_norm).to(self.dtype)
|
| 112 |
-
rgb_norm = rgb_norm.to(device)
|
| 113 |
-
|
| 114 |
-
assert rgb_norm.min() >= -1.0 and rgb_norm.max() <= 1.0
|
| 115 |
-
|
| 116 |
-
# ----------------- predicting depth -----------------
|
| 117 |
-
duplicated_rgb = torch.stack([rgb_norm] * ensemble_size)
|
| 118 |
-
single_rgb_dataset = TensorDataset(duplicated_rgb)
|
| 119 |
-
|
| 120 |
-
# find the batch size
|
| 121 |
-
if batch_size>0:
|
| 122 |
-
_bs = batch_size
|
| 123 |
-
else:
|
| 124 |
-
_bs = 1
|
| 125 |
-
|
| 126 |
-
single_rgb_loader = DataLoader(single_rgb_dataset, batch_size=_bs, shuffle=False)
|
| 127 |
-
|
| 128 |
-
# predicted the depth
|
| 129 |
-
depth_pred_ls = []
|
| 130 |
-
normal_pred_ls = []
|
| 131 |
-
|
| 132 |
-
if show_progress_bar:
|
| 133 |
-
iterable_bar = tqdm(
|
| 134 |
-
single_rgb_loader, desc=" " * 2 + "Inference batches", leave=False
|
| 135 |
-
)
|
| 136 |
-
else:
|
| 137 |
-
iterable_bar = single_rgb_loader
|
| 138 |
-
|
| 139 |
-
for batch in iterable_bar:
|
| 140 |
-
(batched_image, )= batch # here the image is still around 0-1
|
| 141 |
-
|
| 142 |
-
depth_pred_raw, normal_pred_raw = self.single_infer(
|
| 143 |
-
input_rgb=batched_image,
|
| 144 |
-
num_inference_steps=denoising_steps,
|
| 145 |
-
domain=domain,
|
| 146 |
-
show_pbar=show_progress_bar,
|
| 147 |
-
)
|
| 148 |
-
depth_pred_ls.append(depth_pred_raw.detach().clone())
|
| 149 |
-
normal_pred_ls.append(normal_pred_raw.detach().clone())
|
| 150 |
-
|
| 151 |
-
depth_preds = torch.concat(depth_pred_ls, axis=0).squeeze() #(10,224,768)
|
| 152 |
-
normal_preds = torch.concat(normal_pred_ls, axis=0).squeeze()
|
| 153 |
-
torch.cuda.empty_cache() # clear vram cache for ensembling
|
| 154 |
-
|
| 155 |
-
# ----------------- Test-time ensembling -----------------
|
| 156 |
-
if ensemble_size > 1:
|
| 157 |
-
depth_pred, pred_uncert = ensemble_depths(
|
| 158 |
-
depth_preds, **(ensemble_kwargs or {})
|
| 159 |
-
)
|
| 160 |
-
normal_pred = normal_preds[0]
|
| 161 |
-
else:
|
| 162 |
-
depth_pred = depth_preds
|
| 163 |
-
normal_pred = normal_preds
|
| 164 |
-
pred_uncert = None
|
| 165 |
-
|
| 166 |
-
# ----------------- Post processing -----------------
|
| 167 |
-
# Scale prediction to [0, 1]
|
| 168 |
-
min_d = torch.min(depth_pred)
|
| 169 |
-
max_d = torch.max(depth_pred)
|
| 170 |
-
depth_pred = (depth_pred - min_d) / (max_d - min_d)
|
| 171 |
-
|
| 172 |
-
# Convert to numpy
|
| 173 |
-
depth_pred = depth_pred.cpu().numpy().astype(np.float32)
|
| 174 |
-
normal_pred = normal_pred.cpu().numpy().astype(np.float32)
|
| 175 |
-
|
| 176 |
-
# Resize back to original resolution
|
| 177 |
-
if match_input_res:
|
| 178 |
-
pred_img = Image.fromarray(depth_pred)
|
| 179 |
-
pred_img = pred_img.resize(input_size)
|
| 180 |
-
depth_pred = np.asarray(pred_img)
|
| 181 |
-
normal_pred = cv2.resize(chw2hwc(normal_pred), input_size, interpolation = cv2.INTER_NEAREST)
|
| 182 |
-
|
| 183 |
-
# Clip output range: current size is the original size
|
| 184 |
-
depth_pred = depth_pred.clip(0, 1)
|
| 185 |
-
normal_pred = normal_pred.clip(-1, 1)
|
| 186 |
-
|
| 187 |
-
# Colorize
|
| 188 |
-
depth_colored = colorize_depth_maps(
|
| 189 |
-
depth_pred, 0, 1, cmap=color_map
|
| 190 |
-
).squeeze() # [3, H, W], value in (0, 1)
|
| 191 |
-
depth_colored = (depth_colored * 255).astype(np.uint8)
|
| 192 |
-
depth_colored_hwc = chw2hwc(depth_colored)
|
| 193 |
-
depth_colored_img = Image.fromarray(depth_colored_hwc)
|
| 194 |
-
|
| 195 |
-
normal_colored = ((normal_pred + 1)/2 * 255).astype(np.uint8)
|
| 196 |
-
normal_colored_img = Image.fromarray(normal_colored)
|
| 197 |
-
|
| 198 |
-
return DepthNormalPipelineOutput(
|
| 199 |
-
depth_np = depth_pred,
|
| 200 |
-
depth_colored = depth_colored_img,
|
| 201 |
-
normal_np = normal_pred,
|
| 202 |
-
normal_colored = normal_colored_img,
|
| 203 |
-
uncertainty=pred_uncert,
|
| 204 |
-
)
|
| 205 |
-
|
| 206 |
-
def __encode_empty_text(self):
|
| 207 |
-
"""
|
| 208 |
-
Encode text embedding for empty prompt
|
| 209 |
-
"""
|
| 210 |
-
prompt = ""
|
| 211 |
-
text_inputs = self.tokenizer(
|
| 212 |
-
prompt,
|
| 213 |
-
padding="do_not_pad",
|
| 214 |
-
max_length=self.tokenizer.model_max_length,
|
| 215 |
-
truncation=True,
|
| 216 |
-
return_tensors="pt",
|
| 217 |
-
)
|
| 218 |
-
text_input_ids = text_inputs.input_ids.to(self.text_encoder.device) #[1,2]
|
| 219 |
-
# print(text_input_ids.shape)
|
| 220 |
-
self.empty_text_embed = self.text_encoder(text_input_ids)[0].to(self.dtype) #[1,2,1024]
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
@torch.no_grad()
|
| 224 |
-
def single_infer(self,input_rgb:torch.Tensor,
|
| 225 |
-
num_inference_steps:int,
|
| 226 |
-
domain:str,
|
| 227 |
-
show_pbar:bool,):
|
| 228 |
-
|
| 229 |
-
device = input_rgb.device
|
| 230 |
-
|
| 231 |
-
# Set timesteps: inherit from the diffuison pipeline
|
| 232 |
-
self.scheduler.set_timesteps(num_inference_steps, device=device) # here the numbers of the steps is only 10.
|
| 233 |
-
timesteps = self.scheduler.timesteps # [T]
|
| 234 |
-
|
| 235 |
-
# encode image
|
| 236 |
-
rgb_latent = self.encode_RGB(input_rgb)
|
| 237 |
-
|
| 238 |
-
# Initial depth map (Guassian noise)
|
| 239 |
-
geo_latent = torch.randn(rgb_latent.shape, device=device, dtype=self.dtype).repeat(2,1,1,1)
|
| 240 |
-
rgb_latent = rgb_latent.repeat(2,1,1,1)
|
| 241 |
-
|
| 242 |
-
# Batched empty text embedding
|
| 243 |
-
if self.empty_text_embed is None:
|
| 244 |
-
self.__encode_empty_text()
|
| 245 |
-
|
| 246 |
-
batch_empty_text_embed = self.empty_text_embed.repeat(
|
| 247 |
-
(rgb_latent.shape[0], 1, 1)
|
| 248 |
-
) # [B, 2, 1024]
|
| 249 |
-
|
| 250 |
-
# hybrid hierarchical switcher
|
| 251 |
-
geo_class = torch.tensor([[0., 1.], [1, 0]], device=device, dtype=self.dtype)
|
| 252 |
-
geo_embedding = torch.cat([torch.sin(geo_class), torch.cos(geo_class)], dim=-1)
|
| 253 |
-
|
| 254 |
-
if domain == "indoor":
|
| 255 |
-
domain_class = torch.tensor([[1., 0., 0]], device=device, dtype=self.dtype).repeat(2,1)
|
| 256 |
-
elif domain == "outdoor":
|
| 257 |
-
domain_class = torch.tensor([[0., 1., 0]], device=device, dtype=self.dtype).repeat(2,1)
|
| 258 |
-
elif domain == "object":
|
| 259 |
-
domain_class = torch.tensor([[0., 0., 1]], device=device, dtype=self.dtype).repeat(2,1)
|
| 260 |
-
domain_embedding = torch.cat([torch.sin(domain_class), torch.cos(domain_class)], dim=-1)
|
| 261 |
-
|
| 262 |
-
class_embedding = torch.cat((geo_embedding, domain_embedding), dim=-1)
|
| 263 |
-
|
| 264 |
-
# Denoising loop
|
| 265 |
-
if show_pbar:
|
| 266 |
-
iterable = tqdm(
|
| 267 |
-
enumerate(timesteps),
|
| 268 |
-
total=len(timesteps),
|
| 269 |
-
leave=False,
|
| 270 |
-
desc=" " * 4 + "Diffusion denoising",
|
| 271 |
-
)
|
| 272 |
-
else:
|
| 273 |
-
iterable = enumerate(timesteps)
|
| 274 |
-
|
| 275 |
-
for i, t in iterable:
|
| 276 |
-
unet_input = torch.cat([rgb_latent, geo_latent], dim=1)
|
| 277 |
-
|
| 278 |
-
# predict the noise residual
|
| 279 |
-
noise_pred = self.unet(
|
| 280 |
-
unet_input, t.repeat(2), encoder_hidden_states=batch_empty_text_embed, class_labels=class_embedding
|
| 281 |
-
).sample # [B, 4, h, w]
|
| 282 |
-
|
| 283 |
-
# compute the previous noisy sample x_t -> x_t-1
|
| 284 |
-
geo_latent = self.scheduler.step(noise_pred, t, geo_latent).prev_sample
|
| 285 |
-
|
| 286 |
-
geo_latent = geo_latent
|
| 287 |
-
torch.cuda.empty_cache()
|
| 288 |
-
|
| 289 |
-
depth = self.decode_depth(geo_latent[0][None])
|
| 290 |
-
depth = torch.clip(depth, -1.0, 1.0)
|
| 291 |
-
depth = (depth + 1.0) / 2.0
|
| 292 |
-
|
| 293 |
-
normal = self.decode_normal(geo_latent[1][None])
|
| 294 |
-
normal /= (torch.norm(normal, p=2, dim=1, keepdim=True)+1e-5)
|
| 295 |
-
|
| 296 |
-
return depth, normal
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
def encode_RGB(self, rgb_in: torch.Tensor) -> torch.Tensor:
|
| 300 |
-
"""
|
| 301 |
-
Encode RGB image into latent.
|
| 302 |
-
|
| 303 |
-
Args:
|
| 304 |
-
rgb_in (`torch.Tensor`):
|
| 305 |
-
Input RGB image to be encoded.
|
| 306 |
-
|
| 307 |
-
Returns:
|
| 308 |
-
`torch.Tensor`: Image latent.
|
| 309 |
-
"""
|
| 310 |
-
|
| 311 |
-
# encode
|
| 312 |
-
h = self.vae.encoder(rgb_in)
|
| 313 |
-
|
| 314 |
-
moments = self.vae.quant_conv(h)
|
| 315 |
-
mean, logvar = torch.chunk(moments, 2, dim=1)
|
| 316 |
-
# scale latent
|
| 317 |
-
rgb_latent = mean * self.latent_scale_factor
|
| 318 |
-
|
| 319 |
-
return rgb_latent
|
| 320 |
-
|
| 321 |
-
def decode_depth(self, depth_latent: torch.Tensor) -> torch.Tensor:
|
| 322 |
-
"""
|
| 323 |
-
Decode depth latent into depth map.
|
| 324 |
-
|
| 325 |
-
Args:
|
| 326 |
-
depth_latent (`torch.Tensor`):
|
| 327 |
-
Depth latent to be decoded.
|
| 328 |
-
|
| 329 |
-
Returns:
|
| 330 |
-
`torch.Tensor`: Decoded depth map.
|
| 331 |
-
"""
|
| 332 |
-
|
| 333 |
-
# scale latent
|
| 334 |
-
depth_latent = depth_latent / self.latent_scale_factor
|
| 335 |
-
# decode
|
| 336 |
-
z = self.vae.post_quant_conv(depth_latent)
|
| 337 |
-
stacked = self.vae.decoder(z)
|
| 338 |
-
# mean of output channels
|
| 339 |
-
depth_mean = stacked.mean(dim=1, keepdim=True)
|
| 340 |
-
return depth_mean
|
| 341 |
-
|
| 342 |
-
def decode_normal(self, normal_latent: torch.Tensor) -> torch.Tensor:
|
| 343 |
-
"""
|
| 344 |
-
Decode normal latent into normal map.
|
| 345 |
-
|
| 346 |
-
Args:
|
| 347 |
-
normal_latent (`torch.Tensor`):
|
| 348 |
-
Depth latent to be decoded.
|
| 349 |
-
|
| 350 |
-
Returns:
|
| 351 |
-
`torch.Tensor`: Decoded normal map.
|
| 352 |
-
"""
|
| 353 |
-
|
| 354 |
-
# scale latent
|
| 355 |
-
normal_latent = normal_latent / self.latent_scale_factor
|
| 356 |
-
# decode
|
| 357 |
-
z = self.vae.post_quant_conv(normal_latent)
|
| 358 |
-
normal = self.vae.decoder(z)
|
| 359 |
-
return normal
|
| 360 |
-
|
| 361 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|