Spaces:
Runtime error
Runtime error
# Copyright 2023 Bytedance Ltd. and/or its affiliates | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from dataclasses import dataclass | |
from typing import Optional | |
import torch | |
from torch import nn | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.models.modeling_utils import ModelMixin | |
from diffusers.models.attention import FeedForward, CrossAttention, AdaLayerNorm | |
from diffusers.utils import BaseOutput | |
from diffusers.utils.import_utils import is_xformers_available | |
from diffusers.models.cross_attention import XFormersCrossAttnProcessor | |
from einops import rearrange | |
class SpatioTemporalTransformerModelOutput(BaseOutput): | |
"""torch.FloatTensor of shape [batch x channel x frames x height x width]""" | |
sample: torch.FloatTensor | |
if is_xformers_available(): | |
import xformers | |
import xformers.ops | |
else: | |
xformers = None | |
class SpatioTemporalTransformerModel(ModelMixin, ConfigMixin): | |
def __init__( | |
self, | |
num_attention_heads: int = 16, | |
attention_head_dim: int = 88, | |
in_channels: Optional[int] = None, | |
num_layers: int = 1, | |
dropout: float = 0.0, | |
norm_num_groups: int = 32, | |
cross_attention_dim: Optional[int] = None, | |
attention_bias: bool = False, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
use_linear_projection: bool = False, | |
only_cross_attention: bool = False, | |
upcast_attention: bool = False, | |
**transformer_kwargs, | |
): | |
super().__init__() | |
self.use_linear_projection = use_linear_projection | |
self.num_attention_heads = num_attention_heads | |
self.attention_head_dim = attention_head_dim | |
inner_dim = num_attention_heads * attention_head_dim | |
# Define input layers | |
self.in_channels = in_channels | |
self.norm = torch.nn.GroupNorm( | |
num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True | |
) | |
if use_linear_projection: | |
self.proj_in = nn.Linear(in_channels, inner_dim) | |
else: | |
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) | |
# Define transformers blocks | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
SpatioTemporalTransformerBlock( | |
inner_dim, | |
num_attention_heads, | |
attention_head_dim, | |
dropout=dropout, | |
cross_attention_dim=cross_attention_dim, | |
activation_fn=activation_fn, | |
num_embeds_ada_norm=num_embeds_ada_norm, | |
attention_bias=attention_bias, | |
only_cross_attention=only_cross_attention, | |
upcast_attention=upcast_attention, | |
**transformer_kwargs, | |
) | |
for d in range(num_layers) | |
] | |
) | |
# Define output layers | |
if use_linear_projection: | |
self.proj_out = nn.Linear(in_channels, inner_dim) | |
else: | |
self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) | |
def forward( | |
self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True | |
): | |
# 1. Input | |
clip_length = None | |
is_video = hidden_states.ndim == 5 | |
if is_video: | |
clip_length = hidden_states.shape[2] | |
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") | |
encoder_hidden_states = encoder_hidden_states.repeat_interleave(clip_length, 0) | |
*_, h, w = hidden_states.shape | |
residual = hidden_states | |
hidden_states = self.norm(hidden_states) | |
if not self.use_linear_projection: | |
hidden_states = self.proj_in(hidden_states) | |
hidden_states = rearrange(hidden_states, "b c h w -> b (h w) c") | |
else: | |
hidden_states = rearrange(hidden_states, "b c h w -> b (h w) c") | |
hidden_states = self.proj_in(hidden_states) | |
# 2. Blocks | |
for block in self.transformer_blocks: | |
hidden_states = block( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
timestep=timestep, | |
clip_length=clip_length, | |
) | |
# 3. Output | |
if not self.use_linear_projection: | |
hidden_states = rearrange(hidden_states, "b (h w) c -> b c h w", h=h, w=w).contiguous() | |
hidden_states = self.proj_out(hidden_states) | |
else: | |
hidden_states = self.proj_out(hidden_states) | |
hidden_states = rearrange(hidden_states, "b (h w) c -> b c h w", h=h, w=w).contiguous() | |
output = hidden_states + residual | |
if is_video: | |
output = rearrange(output, "(b f) c h w -> b c f h w", f=clip_length) | |
if not return_dict: | |
return (output,) | |
return SpatioTemporalTransformerModelOutput(sample=output) | |
class SpatioTemporalTransformerBlock(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
dropout=0.0, | |
cross_attention_dim: Optional[int] = None, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
attention_bias: bool = False, | |
only_cross_attention: bool = False, | |
upcast_attention: bool = False, | |
use_sparse_causal_attention: bool = False, | |
use_full_sparse_causal_attention: bool = True, | |
temporal_attention_position: str = "after_feedforward", | |
use_gamma = False, | |
): | |
super().__init__() | |
self.only_cross_attention = only_cross_attention | |
self.use_ada_layer_norm = num_embeds_ada_norm is not None | |
self.use_sparse_causal_attention = use_sparse_causal_attention | |
self.use_full_sparse_causal_attention = use_full_sparse_causal_attention | |
self.use_gamma = use_gamma | |
self.temporal_attention_position = temporal_attention_position | |
temporal_attention_positions = ["after_spatial", "after_cross", "after_feedforward"] | |
if temporal_attention_position not in temporal_attention_positions: | |
raise ValueError( | |
f"`temporal_attention_position` must be one of {temporal_attention_positions}" | |
) | |
# 1. Spatial-Attn | |
if use_sparse_causal_attention: | |
spatial_attention = SparseCausalAttention | |
elif use_full_sparse_causal_attention: | |
spatial_attention = SparseCausalFullAttention | |
else: | |
spatial_attention = CrossAttention | |
self.attn1 = spatial_attention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
cross_attention_dim=cross_attention_dim if only_cross_attention else None, | |
upcast_attention=upcast_attention, | |
processor=XFormersCrossAttnProcessor(), | |
) # is a self-attention | |
self.norm1 = ( | |
AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) | |
) | |
if use_gamma: | |
self.attn1_gamma = nn.Parameter(torch.ones(dim)) | |
# 2. Cross-Attn | |
if cross_attention_dim is not None: | |
self.attn2 = CrossAttention( | |
query_dim=dim, | |
cross_attention_dim=cross_attention_dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
processor=XFormersCrossAttnProcessor(), | |
) # is self-attn if encoder_hidden_states is none | |
self.norm2 = ( | |
AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) | |
) | |
if use_gamma: | |
self.attn2_gamma = nn.Parameter(torch.ones(dim)) | |
else: | |
self.attn2 = None | |
self.norm2 = None | |
# 3. Temporal-Attn | |
self.attn_temporal = CrossAttention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
processor=XFormersCrossAttnProcessor() | |
) | |
zero_module(self.attn_temporal) # 默认参数置0 | |
self.norm_temporal = ( | |
AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) | |
) | |
# 4. Feed-forward | |
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn) | |
self.norm3 = nn.LayerNorm(dim) | |
if use_gamma: | |
self.ff_gamma = nn.Parameter(torch.ones(dim)) | |
def forward( | |
self, | |
hidden_states, | |
encoder_hidden_states=None, | |
timestep=None, | |
attention_mask=None, | |
clip_length=None, | |
): | |
# 1. Self-Attention | |
norm_hidden_states = ( | |
self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states) | |
) | |
kwargs = dict( | |
hidden_states=norm_hidden_states, | |
attention_mask=attention_mask, | |
) | |
if self.only_cross_attention: | |
kwargs.update(encoder_hidden_states=encoder_hidden_states) | |
if self.use_sparse_causal_attention or self.use_full_sparse_causal_attention: | |
kwargs.update(clip_length=clip_length) | |
if self.use_gamma: | |
hidden_states = hidden_states + self.attn1(**kwargs) * self.attn1_gamma # NOTE gamma | |
else: | |
hidden_states = hidden_states + self.attn1(**kwargs) | |
if clip_length is not None and self.temporal_attention_position == "after_spatial": | |
hidden_states = self.apply_temporal_attention(hidden_states, timestep, clip_length) | |
if self.attn2 is not None: | |
# 2. Cross-Attention | |
norm_hidden_states = ( | |
self.norm2(hidden_states, timestep) | |
if self.use_ada_layer_norm | |
else self.norm2(hidden_states) | |
) | |
if self.use_gamma: | |
hidden_states = ( | |
self.attn2( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
) * self.attn2_gamma | |
+ hidden_states | |
) | |
else: | |
hidden_states = ( | |
self.attn2( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
) | |
+ hidden_states | |
) | |
if clip_length is not None and self.temporal_attention_position == "after_cross": | |
hidden_states = self.apply_temporal_attention(hidden_states, timestep, clip_length) | |
# 3. Feed-forward | |
if self.use_gamma: | |
hidden_states = self.ff(self.norm3(hidden_states)) * self.ff_gamma + hidden_states | |
else: | |
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states | |
if clip_length is not None and self.temporal_attention_position == "after_feedforward": | |
hidden_states = self.apply_temporal_attention(hidden_states, timestep, clip_length) | |
return hidden_states | |
def apply_temporal_attention(self, hidden_states, timestep, clip_length): | |
d = hidden_states.shape[1] | |
hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=clip_length) | |
norm_hidden_states = ( | |
self.norm_temporal(hidden_states, timestep) | |
if self.use_ada_layer_norm | |
else self.norm_temporal(hidden_states) | |
) | |
hidden_states = self.attn_temporal(norm_hidden_states) + hidden_states | |
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d) | |
return hidden_states | |
class SparseCausalAttention(CrossAttention): | |
def forward( | |
self, | |
hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
clip_length: int = None, | |
): | |
if ( | |
self.added_kv_proj_dim is not None | |
or encoder_hidden_states is not None | |
or attention_mask is not None | |
): | |
raise NotImplementedError | |
if self.group_norm is not None: | |
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = self.to_q(hidden_states) | |
dim = query.shape[-1] | |
query = self.head_to_batch_dim(query) # 64 4096 40 | |
key = self.to_k(hidden_states) | |
value = self.to_v(hidden_states) | |
if clip_length is not None and clip_length > 1: | |
# spatial temporal | |
prev_frame_index = torch.arange(clip_length) - 1 | |
prev_frame_index[0] = 0 | |
key = rearrange(key, "(b f) d c -> b f d c", f=clip_length) | |
key = torch.cat([key[:, [0] * clip_length], key[:, prev_frame_index]], dim=2) | |
key = rearrange(key, "b f d c -> (b f) d c", f=clip_length) | |
value = rearrange(value, "(b f) d c -> b f d c", f=clip_length) | |
value = torch.cat([value[:, [0] * clip_length], value[:, prev_frame_index]], dim=2) | |
value = rearrange(value, "b f d c -> (b f) d c", f=clip_length) | |
key = self.head_to_batch_dim(key) | |
value = self.head_to_batch_dim(value) | |
# use xfromers by default~ | |
hidden_states = xformers.ops.memory_efficient_attention( | |
query, key, value, attn_bias=attention_mask, op=None | |
) | |
hidden_states = hidden_states.to(query.dtype) | |
hidden_states = self.batch_to_head_dim(hidden_states) | |
# linear proj | |
hidden_states = self.to_out[0](hidden_states) | |
# dropout | |
hidden_states = self.to_out[1](hidden_states) | |
return hidden_states | |
def zero_module(module): | |
for p in module.parameters(): | |
nn.init.zeros_(p) | |
return module | |
class SparseCausalFullAttention(CrossAttention): | |
def forward( | |
self, | |
hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
clip_length: int = None, | |
): | |
if ( | |
self.added_kv_proj_dim is not None | |
or encoder_hidden_states is not None | |
or attention_mask is not None | |
): | |
raise NotImplementedError | |
if self.group_norm is not None: | |
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = self.to_q(hidden_states) | |
dim = query.shape[-1] | |
query = self.head_to_batch_dim(query) # 64 4096 40 | |
key = self.to_k(hidden_states) | |
value = self.to_v(hidden_states) | |
if clip_length is not None and clip_length > 1: | |
# 和所有帧做 spatial temporal attention | |
key = rearrange(key, "(b f) d c -> b f d c", f=clip_length) | |
# cat full frames | |
key = torch.cat([key[:, [iii] * clip_length] for iii in range(clip_length) ], dim=2) # concat第一帧+第i帧。以此为key, value。而非自己这一帧。 | |
key = rearrange(key, "b f d c -> (b f) d c", f=clip_length) | |
value = rearrange(value, "(b f) d c -> b f d c", f=clip_length) | |
value = torch.cat([value[:, [iii] * clip_length] for iii in range(clip_length) ], dim=2) # concat第一帧+第i帧。以此为key, value。而非自己这一帧。 | |
value = rearrange(value, "b f d c -> (b f) d c", f=clip_length) | |
key = self.head_to_batch_dim(key) | |
value = self.head_to_batch_dim(value) | |
# use xfromers by default~ | |
hidden_states = xformers.ops.memory_efficient_attention( | |
query, key, value, attn_bias=attention_mask, op=None | |
) | |
hidden_states = hidden_states.to(query.dtype) | |
hidden_states = self.batch_to_head_dim(hidden_states) | |
# linear proj | |
hidden_states = self.to_out[0](hidden_states) | |
# dropout | |
hidden_states = self.to_out[1](hidden_states) | |
return hidden_states | |
def zero_module(module): | |
for p in module.parameters(): | |
nn.init.zeros_(p) | |
return module |