File size: 26,367 Bytes
bb90efe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
# ------------------------------------------
# TextDiffuser: Diffusion Models as Text Painters
# Paper Link: https://arxiv.org/abs/2305.10855
# Code Link: https://github.com/microsoft/unilm/tree/master/textdiffuser
# Copyright (c) Microsoft Corporation.
# This file provides the inference script.
# ------------------------------------------

import os
import cv2
import random
import logging
import argparse
import numpy as np

from pathlib import Path
from tqdm.auto import tqdm
from typing import Optional
from packaging import version
from termcolor import colored
from PIL import Image, ImageDraw, ImageFont, ImageOps, ImageEnhance # import for visualization
from huggingface_hub import HfFolder, Repository, create_repo, whoami

import datasets
from datasets import load_dataset
from datasets import disable_caching

import torch
import torch.utils.checkpoint
import torch.nn.functional as F
from torchvision import transforms

import accelerate
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration, set_seed

import diffusers
from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel 
from diffusers.optimization import get_scheduler
from diffusers.training_utils import EMAModel
from diffusers.utils import check_min_version, deprecate
from diffusers.utils.import_utils import is_xformers_available

import transformers
from transformers import CLIPTextModel, CLIPTokenizer

from util import segmentation_mask_visualization, make_caption_pil, combine_image, transform_mask, filter_segmentation_mask, inpainting_merge_image
from model.layout_generator import get_layout_from_prompt
from model.text_segmenter.unet import UNet

import torchsnooper

disable_caching()
check_min_version("0.15.0.dev0")
logger = get_logger(__name__, log_level="INFO")


def parse_args():
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--pretrained_model_name_or_path", 
        type=str,
        default='runwayml/stable-diffusion-v1-5', # no need to modify this  
        help="Path to pretrained model or model identifier from huggingface.co/models. Please do not modify this.",
    )
    parser.add_argument(
        "--revision",
        type=str,
        default=None,
        required=False,
        help="Revision of pretrained model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--mode",
        type=str,
        default=None,
        required=True,
        choices=["text-to-image", "text-to-image-with-template", "text-inpainting"],
        help="Three modes can be used.",
    )
    parser.add_argument(
        "--prompt", 
        type=str,
        default="",
        required=True,
        help="The text prompts provided by users.",
    )
    parser.add_argument(
        "--template_image", 
        type=str,
        default="",
        help="The template image should be given when using 【text-to-image-with-template】 mode.",
    )
    parser.add_argument(
        "--original_image", 
        type=str,
        default="",
        help="The original image should be given when using 【text-inpainting】 mode.",
    )
    parser.add_argument(
        "--text_mask", 
        type=str,
        default="",
        help="The text mask should be given when using 【text-inpainting】 mode.",
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="output",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument(
        "--cache_dir",
        type=str,
        default=None,
        help="The directory where the downloaded models and datasets will be stored.",
    )
    parser.add_argument(
        "--seed", 
        type=int, 
        default=None, 
        help="A seed for reproducible training."
    )
    parser.add_argument(
        "--resolution",
        type=int,
        default=512,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
        "--classifier_free_scale", 
        type=float,
        default=7.5, # following stable diffusion (https://github.com/CompVis/stable-diffusion)
        help="Classifier free scale following https://arxiv.org/abs/2207.12598.",
    )
    parser.add_argument(
        "--drop_caption", 
        action="store_true", 
        help="Whether to drop captions during training following https://arxiv.org/abs/2207.12598.."
    )
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0, 
        help="Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
    )
    parser.add_argument(
        "--push_to_hub", 
        action="store_true", 
        help="Whether or not to push the model to the Hub."
    )
    parser.add_argument(
        "--hub_token", 
        type=str, 
        default=None, 
        help="The token to use to push to the Model Hub."
    )
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default='fp16',
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to the value of accelerate config of the current system or the"
            " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
        ),
    )
    parser.add_argument(
        "--report_to", 
        type=str,
        default="tensorboard",
        help=(
            'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
            ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
        ),
    )
    parser.add_argument(
        "--local_rank", 
        type=int, 
        default=-1, 
        help="For distributed training: local_rank"
    )
    parser.add_argument(
        "--checkpointing_steps",
        type=int,
        default=500, 
        help=(
            "Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming"
            " training using `--resume_from_checkpoint`."
        ),
    )
    parser.add_argument(
        "--checkpoints_total_limit",
        type=int,
        default=5,
        help=(
            "Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`."
            " See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state"
            " for more docs"
        ),
    )
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default=None, # should be specified during inference
        help=(
            "Whether training should be resumed from a previous checkpoint. Use a path saved by"
            ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
        ),
    )
    parser.add_argument(
        "--enable_xformers_memory_efficient_attention", 
        action="store_true", 
        help="Whether or not to use xformers."
    )
    parser.add_argument(
        "--font_path", 
        type=str, 
        default='assets/font/Arial.ttf', 
        help="The path of font for visualization."
    )
    parser.add_argument(
        "--sample_steps", 
        type=int, 
        default=50, # following stable diffusion (https://github.com/CompVis/stable-diffusion)
        help="Diffusion steps for sampling."
    )
    parser.add_argument(
        "--vis_num", 
        type=int, 
        default=9, # please decreases the number if out-of-memory error occurs
        help="Number of images to be sample. Please decrease it when encountering out of memory error."
    )
    parser.add_argument(
        "--binarization", 
        action="store_true", 
        help="Whether to binarize the template image."
    )
    parser.add_argument(
        "--use_pillow_segmentation_mask", 
        type=bool,
        default=True, 
        help="In the 【text-to-image】 mode, please specify whether to use the segmentation masks provided by PILLOW"
    )
    parser.add_argument(
        "--character_segmenter_path", 
        type=str,
        default='textdiffuser-ckpt/text_segmenter.pth',
        help="checkpoint of character-level segmenter"
    )
    args = parser.parse_args()
    
    print(f'{colored("[√]", "green")} Arguments are loaded.')
    print(args)
    
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    return args



def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
    if token is None:
        token = HfFolder.get_token()
    if organization is None:
        username = whoami(token)["name"]
        return f"{username}/{model_id}"
    else:
        return f"{organization}/{model_id}"


# @torchsnooper.snoop()
def main():
    args = parse_args()
    # If passed along, set the training seed now.
    seed = args.seed if args.seed is not None else random.randint(0, 1000000)
    set_seed(seed)
    print(f'{colored("[√]", "green")} Seed is set to {seed}.')
    
    logging_dir = os.path.join(args.output_dir, args.logging_dir)
    sub_output_dir = f"{args.prompt}_[{args.mode.upper()}]_[SEED-{seed}]"

    print(f'{colored("[√]", "green")} Logging dir is set to {logging_dir}.')

    accelerator_project_config = ProjectConfiguration(total_limit=args.checkpoints_total_limit)

    accelerator = Accelerator(
        gradient_accumulation_steps=1,
        mixed_precision=args.mixed_precision,
        log_with=args.report_to,
        logging_dir=logging_dir,
        project_config=accelerator_project_config,
    )

    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()

    # Handle the repository creation
    if accelerator.is_main_process:
        if args.push_to_hub:
            if args.hub_model_id is None:
                repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
            else:
                repo_name = args.hub_model_id
            create_repo(repo_name, exist_ok=True, token=args.hub_token)
            repo = Repository(args.output_dir, clone_from=repo_name, token=args.hub_token)

            with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
                if "step_*" not in gitignore:
                    gitignore.write("step_*\n")
                if "epoch_*" not in gitignore:
                    gitignore.write("epoch_*\n")
        elif args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)
            print(args.output_dir)

    # Load scheduler, tokenizer and models.
    tokenizer = CLIPTokenizer.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision
    )
    text_encoder = CLIPTextModel.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision
    )
    vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision).cuda()
    unet = UNet2DConditionModel.from_pretrained(
        args.resume_from_checkpoint, subfolder="unet", revision=None 
    ).cuda() 
    
    # Freeze vae and text_encoder
    vae.requires_grad_(False)
    text_encoder.requires_grad_(False)

    if args.enable_xformers_memory_efficient_attention:
        if is_xformers_available():
            import xformers

            xformers_version = version.parse(xformers.__version__)
            if xformers_version == version.parse("0.0.16"):
                logger.warn(
                    "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
                )
            unet.enable_xformers_memory_efficient_attention()
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")

    # `accelerate` 0.16.0 will have better support for customized saving
    if version.parse(accelerate.__version__) >= version.parse("0.16.0"):
        # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
        def save_model_hook(models, weights, output_dir):
           
            for i, model in enumerate(models):
                model.save_pretrained(os.path.join(output_dir, "unet"))

                # make sure to pop weight so that corresponding model is not saved again
                weights.pop()

        def load_model_hook(models, input_dir):
           
            for i in range(len(models)):
                # pop models so that they are not loaded again
                model = models.pop()

                # load diffusers style into model
                load_model = UNet2DConditionModel.from_pretrained(input_dir, subfolder="unet")
                model.register_to_config(**load_model.config)

                model.load_state_dict(load_model.state_dict())
                del load_model

        accelerator.register_save_state_pre_hook(save_model_hook)
        accelerator.register_load_state_pre_hook(load_model_hook)


    # setup schedulers                    
    scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") 
    scheduler.set_timesteps(args.sample_steps) 
    sample_num = args.vis_num
    noise = torch.randn((sample_num, 4, 64, 64)).to("cuda")  # (b, 4, 64, 64)
    input = noise # (b, 4, 64, 64)

    captions = [args.prompt] * sample_num
    captions_nocond = [""] * sample_num
    print(f'{colored("[√]", "green")} Prompt is loaded: {args.prompt}.')
    
    # encode text prompts
    inputs = tokenizer(
        captions, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
    ).input_ids # (b, 77)
    encoder_hidden_states = text_encoder(inputs)[0].cuda() # (b, 77, 768)
    print(f'{colored("[√]", "green")} encoder_hidden_states: {encoder_hidden_states.shape}.')

    inputs_nocond = tokenizer(
        captions_nocond, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
    ).input_ids # (b, 77)
    encoder_hidden_states_nocond = text_encoder(inputs_nocond)[0].cuda() # (b, 77, 768)
    print(f'{colored("[√]", "green")} encoder_hidden_states_nocond: {encoder_hidden_states_nocond.shape}.')

    # load character-level segmenter
    segmenter = UNet(3, 96, True).cuda()
    segmenter = torch.nn.DataParallel(segmenter)
    segmenter.load_state_dict(torch.load(args.character_segmenter_path))
    segmenter.eval()
    print(f'{colored("[√]", "green")} Text segmenter is successfully loaded.')

    #### text-to-image ####
    if args.mode == 'text-to-image':    
        render_image, segmentation_mask_from_pillow = get_layout_from_prompt(args)
        
        if args.use_pillow_segmentation_mask:
            segmentation_mask = torch.Tensor(np.array(segmentation_mask_from_pillow)).cuda() # (512, 512)
        else:
            to_tensor = transforms.ToTensor()
            image_tensor = to_tensor(render_image).unsqueeze(0).cuda().sub_(0.5).div_(0.5)  
            with torch.no_grad():
                segmentation_mask = segmenter(image_tensor)
            segmentation_mask = segmentation_mask.max(1)[1].squeeze(0)
            
        segmentation_mask = filter_segmentation_mask(segmentation_mask)
        segmentation_mask = torch.nn.functional.interpolate(segmentation_mask.unsqueeze(0).unsqueeze(0).float(), size=(256, 256), mode='nearest')
        segmentation_mask = segmentation_mask.squeeze(1).repeat(sample_num, 1, 1).long().to('cuda') # (1, 1, 256, 256)
        print(f'{colored("[√]", "green")} character-level segmentation_mask: {segmentation_mask.shape}.')
        
        feature_mask = torch.ones(sample_num, 1, 64, 64).to('cuda') # (b, 1, 64, 64)
        masked_image = torch.zeros(sample_num, 3, 512, 512).to('cuda') # (b, 3, 512, 512)
        masked_feature = vae.encode(masked_image).latent_dist.sample() # (b, 4, 64, 64)
        masked_feature = masked_feature * vae.config.scaling_factor 
        print(f'{colored("[√]", "green")} feature_mask: {feature_mask.shape}.')
        print(f'{colored("[√]", "green")} masked_feature: {masked_feature.shape}.')


    #### text-to-image-with-template ####
    if args.mode == 'text-to-image-with-template':         
        template_image = Image.open(args.template_image).resize((256,256)).convert('RGB')
        
        # whether binarization is needed
        print(f'{colored("[Warning]", "red")} args.binarization is set to {args.binarization}. You may need it when using handwritten images as templates.')
        if args.binarization:
            gray = ImageOps.grayscale(template_image)
            binary = gray.point(lambda x: 255 if x > 96 else 0, '1')
            template_image = binary.convert('RGB')
            
        to_tensor = transforms.ToTensor()
        image_tensor = to_tensor(template_image).unsqueeze(0).cuda().sub_(0.5).div_(0.5) # (b, 3, 256, 256)
                
        with torch.no_grad():
            segmentation_mask = segmenter(image_tensor) # (b, 96, 256, 256)
        segmentation_mask = segmentation_mask.max(1)[1].squeeze(0) # (256, 256)
        segmentation_mask = filter_segmentation_mask(segmentation_mask) # (256, 256)
        segmentation_mask_pil = Image.fromarray(segmentation_mask.type(torch.uint8).cpu().numpy()).convert('RGB') 
        
        segmentation_mask = torch.nn.functional.interpolate(segmentation_mask.unsqueeze(0).unsqueeze(0).float(), size=(256, 256), mode='nearest') # (b, 1, 256, 256)
        segmentation_mask = segmentation_mask.squeeze(1).repeat(sample_num, 1, 1).long().to('cuda') # (b, 1, 256, 256)
        print(f'{colored("[√]", "green")} Character-level segmentation_mask: {segmentation_mask.shape}.')
        
        feature_mask = torch.ones(sample_num, 1, 64, 64).to('cuda') # (b, 1, 64, 64)
        masked_image = torch.zeros(sample_num, 3, 512, 512).to('cuda') # (b, 3, 512, 512)
        masked_feature = vae.encode(masked_image).latent_dist.sample() # (b, 4, 64, 64)
        masked_feature = masked_feature * vae.config.scaling_factor # (b, 4, 64, 64)
        print(f'{colored("[√]", "green")} feature_mask: {feature_mask.shape}.')
        print(f'{colored("[√]", "green")} masked_feature: {masked_feature.shape}.')
        
        render_image = template_image # for visualization
        

    #### text-inpainting ####
    if args.mode == 'text-inpainting':         
        text_mask = cv2.imread(args.text_mask)
        threshold = 128  
        _, text_mask = cv2.threshold(text_mask, threshold, 255, cv2.THRESH_BINARY)
        text_mask = Image.fromarray(text_mask).convert('RGB').resize((256,256))
        text_mask_tensor = transforms.ToTensor()(text_mask).unsqueeze(0).cuda().sub_(0.5).div_(0.5)
        with torch.no_grad():
            segmentation_mask = segmenter(text_mask_tensor)
            
        segmentation_mask = segmentation_mask.max(1)[1].squeeze(0)
        segmentation_mask = filter_segmentation_mask(segmentation_mask)
        segmentation_mask = torch.nn.functional.interpolate(segmentation_mask.unsqueeze(0).unsqueeze(0).float(), size=(256, 256), mode='nearest')

        image_mask = transform_mask(args.text_mask)
        image_mask = torch.from_numpy(image_mask).cuda().unsqueeze(0).unsqueeze(0) 

        image = Image.open(args.original_image).convert('RGB').resize((512,512))
        image_tensor = transforms.ToTensor()(image).unsqueeze(0).cuda().sub_(0.5).div_(0.5)   
        masked_image = image_tensor * (1-image_mask)
        masked_feature = vae.encode(masked_image).latent_dist.sample().repeat(sample_num, 1, 1, 1)
        masked_feature = masked_feature * vae.config.scaling_factor
        
        image_mask = torch.nn.functional.interpolate(image_mask, size=(256, 256), mode='nearest').repeat(sample_num, 1, 1, 1) 
        segmentation_mask = segmentation_mask * image_mask 
        feature_mask = torch.nn.functional.interpolate(image_mask, size=(64, 64), mode='nearest')
        print(f'{colored("[√]", "green")} feature_mask: {feature_mask.shape}.')
        print(f'{colored("[√]", "green")} segmentation_mask: {segmentation_mask.shape}.')
        print(f'{colored("[√]", "green")} masked_feature: {masked_feature.shape}.')
        
        render_image = Image.open(args.original_image) 



    # diffusion process
    intermediate_images = []
    for t in tqdm(scheduler.timesteps):
        with torch.no_grad():
            noise_pred_cond = unet(sample=input, timestep=t, encoder_hidden_states=encoder_hidden_states, segmentation_mask=segmentation_mask, feature_mask=feature_mask, masked_feature=masked_feature).sample # b, 4, 64, 64
            noise_pred_uncond = unet(sample=input, timestep=t, encoder_hidden_states=encoder_hidden_states_nocond, segmentation_mask=segmentation_mask, feature_mask=feature_mask, masked_feature=masked_feature).sample # b, 4, 64, 64
            noisy_residual = noise_pred_uncond + args.classifier_free_scale * (noise_pred_cond - noise_pred_uncond) # b, 4, 64, 64     
            prev_noisy_sample = scheduler.step(noisy_residual, t, input).prev_sample 
            input = prev_noisy_sample
            intermediate_images.append(prev_noisy_sample)
            
    # decode and visualization
    input = 1 / vae.config.scaling_factor * input 
    sample_images = vae.decode(input.float(), return_dict=False)[0] # (b, 3, 512, 512)

    image_pil = render_image.resize((512,512))
    segmentation_mask = segmentation_mask[0].squeeze().cpu().numpy()
    character_mask_pil = Image.fromarray(((segmentation_mask!=0)*255).astype('uint8')).resize((512,512))
    character_mask_highlight_pil = segmentation_mask_visualization(args.font_path,segmentation_mask)
    caption_pil = make_caption_pil(args.font_path, captions)
    
    # save pred_img
    pred_image_list = []
    for image in sample_images.float():
        image = (image / 2 + 0.5).clamp(0, 1).unsqueeze(0)
        image = image.cpu().permute(0, 2, 3, 1).numpy()[0]
        image = Image.fromarray((image * 255).round().astype("uint8")).convert('RGB')
        pred_image_list.append(image)
        
    os.makedirs(f'{args.output_dir}/{sub_output_dir}', exist_ok=True)
        
    # save additional info
    if args.mode == 'text-to-image':
        image_pil.save(os.path.join(args.output_dir, sub_output_dir, 'render_text_image.png'))
        enhancer = ImageEnhance.Brightness(segmentation_mask_from_pillow)
        im_brightness = enhancer.enhance(5)
        im_brightness.save(os.path.join(args.output_dir, sub_output_dir, 'segmentation_mask_from_pillow.png'))
    if args.mode == 'text-to-image-with-template':
        template_image.save(os.path.join(args.output_dir, sub_output_dir, 'template.png'))
        enhancer = ImageEnhance.Brightness(segmentation_mask_pil)
        im_brightness = enhancer.enhance(5)
        im_brightness.save(os.path.join(args.output_dir, sub_output_dir, 'segmentation_mask_from_template.png'))
    if args.mode == 'text-inpainting':
        character_mask_highlight_pil = character_mask_pil
        # background
        background = Image.open(args.original_image).resize((512, 512))
        alpha = Image.new('L', background.size, int(255 * 0.2))
        background.putalpha(alpha)
        # foreground
        foreground = Image.open(args.text_mask).convert('L').resize((512, 512))
        threshold = 200
        alpha = foreground.point(lambda x: 0 if x > threshold else 255, '1')
        foreground.putalpha(alpha)
        character_mask_pil = Image.alpha_composite(foreground.convert('RGBA'), background.convert('RGBA')).convert('RGB')
        # merge
        pred_image_list_new = []
        for pred_image in pred_image_list:
            pred_image = inpainting_merge_image(Image.open(args.original_image), Image.open(args.text_mask).convert('L'), pred_image)
            pred_image_list_new.append(pred_image)
        pred_image_list = pred_image_list_new

    
    combine_image(args, sub_output_dir, pred_image_list, image_pil, character_mask_pil, character_mask_highlight_pil, caption_pil)


    # create a soft link
    if os.path.exists(os.path.join(args.output_dir, 'latest')):
        os.unlink(os.path.join(args.output_dir, 'latest'))
    os.symlink(os.path.abspath(os.path.join(args.output_dir, sub_output_dir)), os.path.abspath(os.path.join(args.output_dir, 'latest/')))


    color_sub_output_dir = colored(sub_output_dir, 'green')
    print(f'{colored("[√]", "green")} Save successfully. Please check the output at {color_sub_output_dir} OR the latest folder')

if __name__ == "__main__":
    main()