Spaces:
Runtime error
Runtime error
File size: 12,041 Bytes
bb90efe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
# ------------------------------------------
# TextDiffuser: Diffusion Models as Text Painters
# Paper Link: https://arxiv.org/abs/2305.10855
# Code Link: https://github.com/microsoft/unilm/tree/master/textdiffuser
# Copyright (c) Microsoft Corporation.
# This file defines a set of commonly used utility functions.
# ------------------------------------------
import os
import re
import cv2
import math
import shutil
import string
import textwrap
import numpy as np
from PIL import Image, ImageFont, ImageDraw, ImageOps
from typing import *
# define alphabet and alphabet_dic
alphabet = string.digits + string.ascii_lowercase + string.ascii_uppercase + string.punctuation + ' ' # len(aphabet) = 95
alphabet_dic = {}
for index, c in enumerate(alphabet):
alphabet_dic[c] = index + 1 # the index 0 stands for non-character
def transform_mask_pil(mask_root, size):
"""
This function extracts the mask area and text area from the images.
Args:
mask_root (str): The path of mask image.
* The white area is the unmasked area
* The gray area is the masked area
* The white area is the text area
"""
img = np.array(mask_root)
img = cv2.resize(img, (size, size), interpolation=cv2.INTER_NEAREST)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, binary = cv2.threshold(gray, 250, 255, cv2.THRESH_BINARY) # pixel value is set to 0 or 255 according to the threshold
return 1 - (binary.astype(np.float32) / 255)
def transform_mask(mask_root, size):
"""
This function extracts the mask area and text area from the images.
Args:
mask_root (str): The path of mask image.
* The white area is the unmasked area
* The gray area is the masked area
* The white area is the text area
"""
img = cv2.imread(mask_root)
img = cv2.resize(img, (size, size), interpolation=cv2.INTER_NEAREST)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, binary = cv2.threshold(gray, 250, 255, cv2.THRESH_BINARY) # pixel value is set to 0 or 255 according to the threshold
return 1 - (binary.astype(np.float32) / 255)
def segmentation_mask_visualization(font_path: str, segmentation_mask: np.array):
"""
This function visualizes the segmentaiton masks with characters.
Args:
font_path (str): The path of font. We recommand to use Arial.ttf
segmentation_mask (np.array): The character-level segmentation mask.
"""
segmentation_mask = cv2.resize(segmentation_mask, (64, 64), interpolation=cv2.INTER_NEAREST)
font = ImageFont.truetype(font_path, 8)
blank = Image.new('RGB', (512,512), (0,0,0))
d = ImageDraw.Draw(blank)
for i in range(64):
for j in range(64):
if int(segmentation_mask[i][j]) == 0 or int(segmentation_mask[i][j])-1 >= len(alphabet):
continue
else:
d.text((j*8, i*8), alphabet[int(segmentation_mask[i][j])-1], font=font, fill=(0, 255, 0))
return blank
def make_caption_pil(font_path: str, captions: List[str]):
"""
This function converts captions into pil images.
Args:
font_path (str): The path of font. We recommand to use Arial.ttf
captions (List[str]): List of captions.
"""
caption_pil_list = []
font = ImageFont.truetype(font_path, 18)
for caption in captions:
border_size = 2
img = Image.new('RGB', (512-4,48-4), (255,255,255))
img = ImageOps.expand(img, border=(border_size, border_size, border_size, border_size), fill=(127, 127, 127))
draw = ImageDraw.Draw(img)
border_size = 2
text = caption
lines = textwrap.wrap(text, width=40)
x, y = 4, 4
line_height = font.getsize('A')[1] + 4
start = 0
for line in lines:
draw.text((x, y+start), line, font=font, fill=(200, 127, 0))
y += line_height
caption_pil_list.append(img)
return caption_pil_list
def filter_segmentation_mask(segmentation_mask: np.array):
"""
This function removes some noisy predictions of segmentation masks.
Args:
segmentation_mask (np.array): The character-level segmentation mask.
"""
segmentation_mask[segmentation_mask==alphabet_dic['-']] = 0
segmentation_mask[segmentation_mask==alphabet_dic[' ']] = 0
return segmentation_mask
def combine_image(args, resolution, sub_output_dir: str, pred_image_list: List, image_pil: Image, character_mask_pil: Image, character_mask_highlight_pil: Image, caption_pil_list: List):
"""
This function combines all the outputs and useful inputs together.
Args:
args (argparse.ArgumentParser): The arguments.
pred_image_list (List): List of predicted images.
image_pil (Image): The original image.
character_mask_pil (Image): The character-level segmentation mask.
character_mask_highlight_pil (Image): The character-level segmentation mask highlighting character regions with green color.
caption_pil_list (List): List of captions.
"""
size = len(pred_image_list)
if size == 1:
return pred_image_list[0]
elif size == 2:
blank = Image.new('RGB', (resolution*2, resolution), (0,0,0))
blank.paste(pred_image_list[0],(0,0))
blank.paste(pred_image_list[1],(resolution,0))
elif size == 3:
blank = Image.new('RGB', (resolution*3, resolution), (0,0,0))
blank.paste(pred_image_list[0],(0,0))
blank.paste(pred_image_list[1],(resolution,0))
blank.paste(pred_image_list[2],(resolution*2,0))
elif size == 4:
blank = Image.new('RGB', (resolution*2, resolution*2), (0,0,0))
blank.paste(pred_image_list[0],(0,0))
blank.paste(pred_image_list[1],(resolution,0))
blank.paste(pred_image_list[2],(0,resolution))
blank.paste(pred_image_list[3],(resolution,resolution))
return blank
def combine_image_gradio(args, size, sub_output_dir: str, pred_image_list: List, image_pil: Image, character_mask_pil: Image, character_mask_highlight_pil: Image, caption_pil_list: List):
"""
This function combines all the outputs and useful inputs together.
Args:
args (argparse.ArgumentParser): The arguments.
pred_image_list (List): List of predicted images.
image_pil (Image): The original image.
character_mask_pil (Image): The character-level segmentation mask.
character_mask_highlight_pil (Image): The character-level segmentation mask highlighting character regions with green color.
caption_pil_list (List): List of captions.
"""
size = len(pred_image_list)
if size == 1:
return pred_image_list[0]
elif size == 2:
blank = Image.new('RGB', (size*2, size), (0,0,0))
blank.paste(pred_image_list[0],(0,0))
blank.paste(pred_image_list[1],(size,0))
elif size == 3:
blank = Image.new('RGB', (size*3, size), (0,0,0))
blank.paste(pred_image_list[0],(0,0))
blank.paste(pred_image_list[1],(size,0))
blank.paste(pred_image_list[2],(size*2,0))
elif size == 4:
blank = Image.new('RGB', (size*2, size*2), (0,0,0))
blank.paste(pred_image_list[0],(0,0))
blank.paste(pred_image_list[1],(size,0))
blank.paste(pred_image_list[2],(0,size))
blank.paste(pred_image_list[3],(size,size))
return blank
def get_width(font_path, text):
"""
This function calculates the width of the text.
Args:
font_path (str): user prompt.
text (str): user prompt.
"""
font = ImageFont.truetype(font_path, 24)
width, _ = font.getsize(text)
return width
def get_key_words(text: str):
"""
This function detect keywords (enclosed by quotes) from user prompts. The keywords are used to guide the layout generation.
Args:
text (str): user prompt.
"""
words = []
text = text
matches = re.findall(r"'(.*?)'", text) # find the keywords enclosed by ''
if matches:
for match in matches:
words.extend(match.split())
if len(words) >= 8:
return []
return words
def adjust_overlap_box(box_output, current_index):
"""
This function adjust the overlapping boxes.
Args:
box_output (List): List of predicted boxes.
current_index (int): the index of current box.
"""
if current_index == 0:
return box_output
else:
# judge whether it contains overlap with the last output
last_box = box_output[0, current_index-1, :]
xmin_last, ymin_last, xmax_last, ymax_last = last_box
current_box = box_output[0, current_index, :]
xmin, ymin, xmax, ymax = current_box
if xmin_last <= xmin <= xmax_last and ymin_last <= ymin <= ymax_last:
print('adjust overlapping')
distance_x = xmax_last - xmin
distance_y = ymax_last - ymin
if distance_x <= distance_y:
# avoid overlap
new_x_min = xmax_last + 0.025
new_x_max = xmax - xmin + xmax_last + 0.025
box_output[0,current_index,0] = new_x_min
box_output[0,current_index,2] = new_x_max
else:
new_y_min = ymax_last + 0.025
new_y_max = ymax - ymin + ymax_last + 0.025
box_output[0,current_index,1] = new_y_min
box_output[0,current_index,3] = new_y_max
elif xmin_last <= xmin <= xmax_last and ymin_last <= ymax <= ymax_last:
print('adjust overlapping')
new_x_min = xmax_last + 0.05
new_x_max = xmax - xmin + xmax_last + 0.05
box_output[0,current_index,0] = new_x_min
box_output[0,current_index,2] = new_x_max
return box_output
def shrink_box(box, scale_factor = 0.9):
"""
This function shrinks the box.
Args:
box (List): List of predicted boxes.
scale_factor (float): The scale factor of shrinking.
"""
x1, y1, x2, y2 = box
x1_new = x1 + (x2 - x1) * (1 - scale_factor) / 2
y1_new = y1 + (y2 - y1) * (1 - scale_factor) / 2
x2_new = x2 - (x2 - x1) * (1 - scale_factor) / 2
y2_new = y2 - (y2 - y1) * (1 - scale_factor) / 2
return (x1_new, y1_new, x2_new, y2_new)
def adjust_font_size(args, width, height, draw, text):
"""
This function adjusts the font size.
Args:
args (argparse.ArgumentParser): The arguments.
width (int): The width of the text.
height (int): The height of the text.
draw (ImageDraw): The ImageDraw object.
text (str): The text.
"""
size_start = height
while True:
font = ImageFont.truetype(args.font_path, size_start)
text_width, _ = draw.textsize(text, font=font)
if text_width >= width:
size_start = size_start - 1
else:
return size_start
def inpainting_merge_image(original_image, mask_image, inpainting_image):
"""
This function merges the original image, mask image and inpainting image.
Args:
original_image (PIL.Image): The original image.
mask_image (PIL.Image): The mask images.
inpainting_image (PIL.Image): The inpainting images.
"""
original_image = original_image.resize((512, 512))
mask_image = mask_image.resize((512, 512))
inpainting_image = inpainting_image.resize((512, 512))
mask_image.convert('L')
threshold = 250
table = []
for i in range(256):
if i < threshold:
table.append(1)
else:
table.append(0)
mask_image = mask_image.point(table, "1")
merged_image = Image.composite(inpainting_image, original_image, mask_image)
return merged_image
|