File size: 2,468 Bytes
315fa91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Builds ultralytics/yolov5:latest image on DockerHub https://hub.docker.com/r/ultralytics/yolov5
# Image is CUDA-optimized for YOLOv5 single/multi-GPU training and inference
# Start FROM NVIDIA PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
FROM nvcr.io/nvidia/pytorch:22.07-py3
RUN rm -rf /opt/pytorch # remove 1.2GB dir
# Downloads to user config dir
ADD https://ultralytics.com/assets/Arial.ttf https://ultralytics.com/assets/Arial.Unicode.ttf /root/.config/Ultralytics/
# Install linux packages
RUN apt update && apt install --no-install-recommends -y zip htop screen libgl1-mesa-glx
# Install pip packages
COPY requirements.txt .
RUN python -m pip install --upgrade pip wheel
RUN pip uninstall -y Pillow torchtext # torch torchvision
RUN pip install --no-cache -r requirements.txt albumentations wandb gsutil notebook Pillow>=9.1.0 \
'opencv-python<4.6.0.66' \
--extra-index-url https://download.pytorch.org/whl/cu113
# Create working directory
RUN mkdir -p /usr/src/app
WORKDIR /usr/src/app
# Copy contents
# COPY . /usr/src/app (issues as not a .git directory)
RUN git clone https://github.com/ultralytics/yolov5 /usr/src/app
# Set environment variables
ENV OMP_NUM_THREADS=8
# Usage Examples -------------------------------------------------------------------------------------------------------
# Build and Push
# t=ultralytics/yolov5:latest && sudo docker build -f utils/docker/Dockerfile -t $t . && sudo docker push $t
# Pull and Run
# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all $t
# Pull and Run with local directory access
# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/datasets:/usr/src/datasets $t
# Kill all
# sudo docker kill $(sudo docker ps -q)
# Kill all image-based
# sudo docker kill $(sudo docker ps -qa --filter ancestor=ultralytics/yolov5:latest)
# Bash into running container
# sudo docker exec -it 5a9b5863d93d bash
# Bash into stopped container
# id=$(sudo docker ps -qa) && sudo docker start $id && sudo docker exec -it $id bash
# Clean up
# docker system prune -a --volumes
# Update Ubuntu drivers
# https://www.maketecheasier.com/install-nvidia-drivers-ubuntu/
# DDP test
# python -m torch.distributed.run --nproc_per_node 2 --master_port 1 train.py --epochs 3
# GCP VM from Image
# docker.io/ultralytics/yolov5:latest
|