File size: 2,468 Bytes
315fa91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Builds ultralytics/yolov5:latest image on DockerHub https://hub.docker.com/r/ultralytics/yolov5
# Image is CUDA-optimized for YOLOv5 single/multi-GPU training and inference

# Start FROM NVIDIA PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
FROM nvcr.io/nvidia/pytorch:22.07-py3
RUN rm -rf /opt/pytorch  # remove 1.2GB dir

# Downloads to user config dir
ADD https://ultralytics.com/assets/Arial.ttf https://ultralytics.com/assets/Arial.Unicode.ttf /root/.config/Ultralytics/

# Install linux packages
RUN apt update && apt install --no-install-recommends -y zip htop screen libgl1-mesa-glx

# Install pip packages
COPY requirements.txt .
RUN python -m pip install --upgrade pip wheel
RUN pip uninstall -y Pillow torchtext  # torch torchvision
RUN pip install --no-cache -r requirements.txt albumentations wandb gsutil notebook Pillow>=9.1.0 \
    'opencv-python<4.6.0.66' \
    --extra-index-url https://download.pytorch.org/whl/cu113

# Create working directory
RUN mkdir -p /usr/src/app
WORKDIR /usr/src/app

# Copy contents
# COPY . /usr/src/app  (issues as not a .git directory)
RUN git clone https://github.com/ultralytics/yolov5 /usr/src/app

# Set environment variables
ENV OMP_NUM_THREADS=8


# Usage Examples -------------------------------------------------------------------------------------------------------

# Build and Push
# t=ultralytics/yolov5:latest && sudo docker build -f utils/docker/Dockerfile -t $t . && sudo docker push $t

# Pull and Run
# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all $t

# Pull and Run with local directory access
# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/datasets:/usr/src/datasets $t

# Kill all
# sudo docker kill $(sudo docker ps -q)

# Kill all image-based
# sudo docker kill $(sudo docker ps -qa --filter ancestor=ultralytics/yolov5:latest)

# Bash into running container
# sudo docker exec -it 5a9b5863d93d bash

# Bash into stopped container
# id=$(sudo docker ps -qa) && sudo docker start $id && sudo docker exec -it $id bash

# Clean up
# docker system prune -a --volumes

# Update Ubuntu drivers
# https://www.maketecheasier.com/install-nvidia-drivers-ubuntu/

# DDP test
# python -m torch.distributed.run --nproc_per_node 2 --master_port 1 train.py --epochs 3

# GCP VM from Image
# docker.io/ultralytics/yolov5:latest