|
|
|
""" |
|
Train a YOLOv5 model on a custom dataset. |
|
|
|
Models and datasets download automatically from the latest YOLOv5 release. |
|
Models: https://github.com/ultralytics/yolov5/tree/master/models |
|
Datasets: https://github.com/ultralytics/yolov5/tree/master/data |
|
Tutorial: https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data |
|
|
|
Usage: |
|
$ python path/to/train.py --data coco128.yaml --weights yolov5s.pt --img 640 # from pretrained (RECOMMENDED) |
|
$ python path/to/train.py --data coco128.yaml --weights '' --cfg yolov5s.yaml --img 640 # from scratch |
|
""" |
|
|
|
import argparse |
|
import math |
|
import os |
|
import random |
|
import sys |
|
import time |
|
from copy import deepcopy |
|
from datetime import datetime |
|
from pathlib import Path |
|
|
|
import numpy as np |
|
import torch |
|
import torch.distributed as dist |
|
import torch.nn as nn |
|
import yaml |
|
from torch.optim import lr_scheduler |
|
from tqdm import tqdm |
|
|
|
FILE = Path(__file__).resolve() |
|
ROOT = FILE.parents[0] |
|
if str(ROOT) not in sys.path: |
|
sys.path.append(str(ROOT)) |
|
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) |
|
|
|
import val |
|
from models.experimental import attempt_load |
|
from models.yolo import Model |
|
from utils.autoanchor import check_anchors |
|
from utils.autobatch import check_train_batch_size |
|
from utils.callbacks import Callbacks |
|
from utils.dataloaders import create_dataloader |
|
from utils.downloads import attempt_download, is_url |
|
from utils.general import (LOGGER, check_amp, check_dataset, check_file, check_git_status, check_img_size, |
|
check_requirements, check_suffix, check_yaml, colorstr, get_latest_run, increment_path, |
|
init_seeds, intersect_dicts, labels_to_class_weights, labels_to_image_weights, methods, |
|
one_cycle, print_args, print_mutation, strip_optimizer) |
|
from utils.loggers import Loggers |
|
from utils.loggers.wandb.wandb_utils import check_wandb_resume |
|
from utils.loss import ComputeLoss |
|
from utils.metrics import fitness |
|
from utils.plots import plot_evolve, plot_labels |
|
from utils.torch_utils import (EarlyStopping, ModelEMA, de_parallel, select_device, smart_DDP, smart_optimizer, |
|
smart_resume, torch_distributed_zero_first) |
|
|
|
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) |
|
RANK = int(os.getenv('RANK', -1)) |
|
WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1)) |
|
|
|
|
|
def train(hyp, opt, device, callbacks): |
|
save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze = \ |
|
Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \ |
|
opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze |
|
callbacks.run('on_pretrain_routine_start') |
|
|
|
|
|
w = save_dir / 'weights' |
|
(w.parent if evolve else w).mkdir(parents=True, exist_ok=True) |
|
last, best = w / 'last.pt', w / 'best.pt' |
|
|
|
|
|
if isinstance(hyp, str): |
|
with open(hyp, errors='ignore') as f: |
|
hyp = yaml.safe_load(f) |
|
LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items())) |
|
opt.hyp = hyp.copy() |
|
|
|
|
|
if not evolve: |
|
with open(save_dir / 'hyp.yaml', 'w') as f: |
|
yaml.safe_dump(hyp, f, sort_keys=False) |
|
with open(save_dir / 'opt.yaml', 'w') as f: |
|
yaml.safe_dump(vars(opt), f, sort_keys=False) |
|
|
|
|
|
data_dict = None |
|
if RANK in {-1, 0}: |
|
loggers = Loggers(save_dir, weights, opt, hyp, LOGGER) |
|
if loggers.clearml: |
|
data_dict = loggers.clearml.data_dict |
|
if loggers.wandb: |
|
data_dict = loggers.wandb.data_dict |
|
if resume: |
|
weights, epochs, hyp, batch_size = opt.weights, opt.epochs, opt.hyp, opt.batch_size |
|
|
|
|
|
for k in methods(loggers): |
|
callbacks.register_action(k, callback=getattr(loggers, k)) |
|
|
|
|
|
plots = not evolve and not opt.noplots |
|
cuda = device.type != 'cpu' |
|
init_seeds(opt.seed + 1 + RANK, deterministic=True) |
|
with torch_distributed_zero_first(LOCAL_RANK): |
|
data_dict = data_dict or check_dataset(data) |
|
train_path, val_path = data_dict['train'], data_dict['val'] |
|
nc = 1 if single_cls else int(data_dict['nc']) |
|
names = ['item'] if single_cls and len(data_dict['names']) != 1 else data_dict['names'] |
|
assert len(names) == nc, f'{len(names)} names found for nc={nc} dataset in {data}' |
|
is_coco = isinstance(val_path, str) and val_path.endswith('coco/val2017.txt') |
|
|
|
|
|
check_suffix(weights, '.pt') |
|
pretrained = weights.endswith('.pt') |
|
if pretrained: |
|
with torch_distributed_zero_first(LOCAL_RANK): |
|
weights = attempt_download(weights) |
|
ckpt = torch.load(weights, map_location='cpu') |
|
model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) |
|
exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else [] |
|
csd = ckpt['model'].float().state_dict() |
|
csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) |
|
model.load_state_dict(csd, strict=False) |
|
LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}') |
|
else: |
|
model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) |
|
amp = check_amp(model) |
|
|
|
|
|
freeze = [f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0]))] |
|
for k, v in model.named_parameters(): |
|
v.requires_grad = True |
|
|
|
if any(x in k for x in freeze): |
|
LOGGER.info(f'freezing {k}') |
|
v.requires_grad = False |
|
|
|
|
|
gs = max(int(model.stride.max()), 32) |
|
imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) |
|
|
|
|
|
if RANK == -1 and batch_size == -1: |
|
batch_size = check_train_batch_size(model, imgsz, amp) |
|
loggers.on_params_update({"batch_size": batch_size}) |
|
|
|
|
|
nbs = 64 |
|
accumulate = max(round(nbs / batch_size), 1) |
|
hyp['weight_decay'] *= batch_size * accumulate / nbs |
|
optimizer = smart_optimizer(model, opt.optimizer, hyp['lr0'], hyp['momentum'], hyp['weight_decay']) |
|
|
|
|
|
if opt.cos_lr: |
|
lf = one_cycle(1, hyp['lrf'], epochs) |
|
else: |
|
lf = lambda x: (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf'] |
|
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) |
|
|
|
|
|
ema = ModelEMA(model) if RANK in {-1, 0} else None |
|
|
|
|
|
best_fitness, start_epoch = 0.0, 0 |
|
if pretrained: |
|
best_fitness, start_epoch, epochs = smart_resume(ckpt, optimizer, ema, weights, epochs, resume) |
|
del ckpt, csd |
|
|
|
|
|
if cuda and RANK == -1 and torch.cuda.device_count() > 1: |
|
LOGGER.warning('WARNING: DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n' |
|
'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.') |
|
model = torch.nn.DataParallel(model) |
|
|
|
|
|
if opt.sync_bn and cuda and RANK != -1: |
|
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device) |
|
LOGGER.info('Using SyncBatchNorm()') |
|
|
|
|
|
train_loader, dataset = create_dataloader(train_path, |
|
imgsz, |
|
batch_size // WORLD_SIZE, |
|
gs, |
|
single_cls, |
|
hyp=hyp, |
|
augment=True, |
|
cache=None if opt.cache == 'val' else opt.cache, |
|
rect=opt.rect, |
|
rank=LOCAL_RANK, |
|
workers=workers, |
|
image_weights=opt.image_weights, |
|
quad=opt.quad, |
|
prefix=colorstr('train: '), |
|
shuffle=True) |
|
labels = np.concatenate(dataset.labels, 0) |
|
mlc = int(labels[:, 0].max()) |
|
assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}' |
|
|
|
|
|
if RANK in {-1, 0}: |
|
val_loader = create_dataloader(val_path, |
|
imgsz, |
|
batch_size // WORLD_SIZE * 2, |
|
gs, |
|
single_cls, |
|
hyp=hyp, |
|
cache=None if noval else opt.cache, |
|
rect=True, |
|
rank=-1, |
|
workers=workers * 2, |
|
pad=0.5, |
|
prefix=colorstr('val: '))[0] |
|
|
|
if not resume: |
|
if plots: |
|
plot_labels(labels, names, save_dir) |
|
|
|
|
|
if not opt.noautoanchor: |
|
check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz) |
|
model.half().float() |
|
|
|
callbacks.run('on_pretrain_routine_end') |
|
|
|
|
|
if cuda and RANK != -1: |
|
model = smart_DDP(model) |
|
|
|
|
|
nl = de_parallel(model).model[-1].nl |
|
hyp['box'] *= 3 / nl |
|
hyp['cls'] *= nc / 80 * 3 / nl |
|
hyp['obj'] *= (imgsz / 640) ** 2 * 3 / nl |
|
hyp['label_smoothing'] = opt.label_smoothing |
|
model.nc = nc |
|
model.hyp = hyp |
|
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc |
|
model.names = names |
|
|
|
|
|
t0 = time.time() |
|
nb = len(train_loader) |
|
nw = max(round(hyp['warmup_epochs'] * nb), 100) |
|
|
|
last_opt_step = -1 |
|
maps = np.zeros(nc) |
|
results = (0, 0, 0, 0, 0, 0, 0) |
|
scheduler.last_epoch = start_epoch - 1 |
|
scaler = torch.cuda.amp.GradScaler(enabled=amp) |
|
stopper, stop = EarlyStopping(patience=opt.patience), False |
|
compute_loss = ComputeLoss(model) |
|
callbacks.run('on_train_start') |
|
LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n' |
|
f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n' |
|
f"Logging results to {colorstr('bold', save_dir)}\n" |
|
f'Starting training for {epochs} epochs...') |
|
for epoch in range(start_epoch, epochs): |
|
callbacks.run('on_train_epoch_start') |
|
model.train() |
|
|
|
|
|
if opt.image_weights: |
|
cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc |
|
iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) |
|
dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) |
|
|
|
|
|
|
|
|
|
|
|
mloss = torch.zeros(3, device=device) |
|
if RANK != -1: |
|
train_loader.sampler.set_epoch(epoch) |
|
pbar = enumerate(train_loader) |
|
LOGGER.info(('\n' + '%10s' * 7) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'labels', 'img_size')) |
|
if RANK in {-1, 0}: |
|
pbar = tqdm(pbar, total=nb, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') |
|
optimizer.zero_grad() |
|
for i, (imgs, targets, paths, _) in pbar: |
|
callbacks.run('on_train_batch_start') |
|
ni = i + nb * epoch |
|
imgs = imgs.to(device, non_blocking=True).float() / 255 |
|
|
|
|
|
if ni <= nw: |
|
xi = [0, nw] |
|
|
|
accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round()) |
|
for j, x in enumerate(optimizer.param_groups): |
|
|
|
x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * lf(epoch)]) |
|
if 'momentum' in x: |
|
x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']]) |
|
|
|
|
|
if opt.multi_scale: |
|
sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs |
|
sf = sz / max(imgs.shape[2:]) |
|
if sf != 1: |
|
ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] |
|
imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False) |
|
|
|
|
|
with torch.cuda.amp.autocast(amp): |
|
pred = model(imgs) |
|
loss, loss_items = compute_loss(pred, targets.to(device)) |
|
if RANK != -1: |
|
loss *= WORLD_SIZE |
|
if opt.quad: |
|
loss *= 4. |
|
|
|
|
|
scaler.scale(loss).backward() |
|
|
|
|
|
if ni - last_opt_step >= accumulate: |
|
scaler.unscale_(optimizer) |
|
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0) |
|
scaler.step(optimizer) |
|
scaler.update() |
|
optimizer.zero_grad() |
|
if ema: |
|
ema.update(model) |
|
last_opt_step = ni |
|
|
|
|
|
if RANK in {-1, 0}: |
|
mloss = (mloss * i + loss_items) / (i + 1) |
|
mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' |
|
pbar.set_description(('%10s' * 2 + '%10.4g' * 5) % |
|
(f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1])) |
|
callbacks.run('on_train_batch_end', ni, model, imgs, targets, paths, plots) |
|
if callbacks.stop_training: |
|
return |
|
|
|
|
|
|
|
lr = [x['lr'] for x in optimizer.param_groups] |
|
scheduler.step() |
|
|
|
if RANK in {-1, 0}: |
|
|
|
callbacks.run('on_train_epoch_end', epoch=epoch) |
|
ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights']) |
|
final_epoch = (epoch + 1 == epochs) or stopper.possible_stop |
|
if not noval or final_epoch: |
|
results, maps, _ = val.run(data_dict, |
|
batch_size=batch_size // WORLD_SIZE * 2, |
|
imgsz=imgsz, |
|
half=amp, |
|
model=ema.ema, |
|
single_cls=single_cls, |
|
dataloader=val_loader, |
|
save_dir=save_dir, |
|
plots=False, |
|
callbacks=callbacks, |
|
compute_loss=compute_loss) |
|
|
|
|
|
fi = fitness(np.array(results).reshape(1, -1)) |
|
stop = stopper(epoch=epoch, fitness=fi) |
|
if fi > best_fitness: |
|
best_fitness = fi |
|
log_vals = list(mloss) + list(results) + lr |
|
callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi) |
|
|
|
|
|
if (not nosave) or (final_epoch and not evolve): |
|
ckpt = { |
|
'epoch': epoch, |
|
'best_fitness': best_fitness, |
|
'model': deepcopy(de_parallel(model)).half(), |
|
'ema': deepcopy(ema.ema).half(), |
|
'updates': ema.updates, |
|
'optimizer': optimizer.state_dict(), |
|
'wandb_id': loggers.wandb.wandb_run.id if loggers.wandb else None, |
|
'opt': vars(opt), |
|
'date': datetime.now().isoformat()} |
|
|
|
|
|
torch.save(ckpt, last) |
|
if best_fitness == fi: |
|
torch.save(ckpt, best) |
|
if opt.save_period > 0 and epoch % opt.save_period == 0: |
|
torch.save(ckpt, w / f'epoch{epoch}.pt') |
|
del ckpt |
|
callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi) |
|
|
|
|
|
if RANK != -1: |
|
broadcast_list = [stop if RANK == 0 else None] |
|
dist.broadcast_object_list(broadcast_list, 0) |
|
if RANK != 0: |
|
stop = broadcast_list[0] |
|
if stop: |
|
break |
|
|
|
|
|
|
|
if RANK in {-1, 0}: |
|
LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.') |
|
for f in last, best: |
|
if f.exists(): |
|
strip_optimizer(f) |
|
if f is best: |
|
LOGGER.info(f'\nValidating {f}...') |
|
results, _, _ = val.run( |
|
data_dict, |
|
batch_size=batch_size // WORLD_SIZE * 2, |
|
imgsz=imgsz, |
|
model=attempt_load(f, device).half(), |
|
iou_thres=0.65 if is_coco else 0.60, |
|
single_cls=single_cls, |
|
dataloader=val_loader, |
|
save_dir=save_dir, |
|
save_json=is_coco, |
|
verbose=True, |
|
plots=plots, |
|
callbacks=callbacks, |
|
compute_loss=compute_loss) |
|
if is_coco: |
|
callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi) |
|
|
|
callbacks.run('on_train_end', last, best, plots, epoch, results) |
|
|
|
torch.cuda.empty_cache() |
|
return results |
|
|
|
|
|
def parse_opt(known=False): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='initial weights path') |
|
parser.add_argument('--cfg', type=str, default='', help='model.yaml path') |
|
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path') |
|
parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters path') |
|
parser.add_argument('--epochs', type=int, default=300) |
|
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch') |
|
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)') |
|
parser.add_argument('--rect', action='store_true', help='rectangular training') |
|
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training') |
|
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint') |
|
parser.add_argument('--noval', action='store_true', help='only validate final epoch') |
|
parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor') |
|
parser.add_argument('--noplots', action='store_true', help='save no plot files') |
|
parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations') |
|
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket') |
|
parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in "ram" (default) or "disk"') |
|
parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training') |
|
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') |
|
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%') |
|
parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class') |
|
parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='optimizer') |
|
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode') |
|
parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)') |
|
parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name') |
|
parser.add_argument('--name', default='exp', help='save to project/name') |
|
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') |
|
parser.add_argument('--quad', action='store_true', help='quad dataloader') |
|
parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler') |
|
parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon') |
|
parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)') |
|
parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2') |
|
parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)') |
|
parser.add_argument('--seed', type=int, default=0, help='Global training seed') |
|
parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify') |
|
|
|
|
|
parser.add_argument('--entity', default=None, help='W&B: Entity') |
|
parser.add_argument('--upload_dataset', nargs='?', const=True, default=False, help='W&B: Upload data, "val" option') |
|
parser.add_argument('--bbox_interval', type=int, default=-1, help='W&B: Set bounding-box image logging interval') |
|
parser.add_argument('--artifact_alias', type=str, default='latest', help='W&B: Version of dataset artifact to use') |
|
|
|
return parser.parse_known_args()[0] if known else parser.parse_args() |
|
|
|
|
|
def main(opt, callbacks=Callbacks()): |
|
|
|
if RANK in {-1, 0}: |
|
print_args(vars(opt)) |
|
check_git_status() |
|
check_requirements(exclude=['thop']) |
|
|
|
|
|
if opt.resume and not (check_wandb_resume(opt) or opt.evolve): |
|
last = Path(check_file(opt.resume) if isinstance(opt.resume, str) else get_latest_run()) |
|
opt_yaml = last.parent.parent / 'opt.yaml' |
|
opt_data = opt.data |
|
if opt_yaml.is_file(): |
|
with open(opt_yaml, errors='ignore') as f: |
|
d = yaml.safe_load(f) |
|
else: |
|
d = torch.load(last, map_location='cpu')['opt'] |
|
opt = argparse.Namespace(**d) |
|
opt.cfg, opt.weights, opt.resume = '', str(last), True |
|
if is_url(opt_data): |
|
opt.data = check_file(opt_data) |
|
else: |
|
opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \ |
|
check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project) |
|
assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified' |
|
if opt.evolve: |
|
if opt.project == str(ROOT / 'runs/train'): |
|
opt.project = str(ROOT / 'runs/evolve') |
|
opt.exist_ok, opt.resume = opt.resume, False |
|
if opt.name == 'cfg': |
|
opt.name = Path(opt.cfg).stem |
|
opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) |
|
|
|
|
|
device = select_device(opt.device, batch_size=opt.batch_size) |
|
if LOCAL_RANK != -1: |
|
msg = 'is not compatible with YOLOv5 Multi-GPU DDP training' |
|
assert not opt.image_weights, f'--image-weights {msg}' |
|
assert not opt.evolve, f'--evolve {msg}' |
|
assert opt.batch_size != -1, f'AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size' |
|
assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE' |
|
assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command' |
|
torch.cuda.set_device(LOCAL_RANK) |
|
device = torch.device('cuda', LOCAL_RANK) |
|
dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo") |
|
|
|
|
|
if not opt.evolve: |
|
train(opt.hyp, opt, device, callbacks) |
|
|
|
|
|
else: |
|
|
|
meta = { |
|
'lr0': (1, 1e-5, 1e-1), |
|
'lrf': (1, 0.01, 1.0), |
|
'momentum': (0.3, 0.6, 0.98), |
|
'weight_decay': (1, 0.0, 0.001), |
|
'warmup_epochs': (1, 0.0, 5.0), |
|
'warmup_momentum': (1, 0.0, 0.95), |
|
'warmup_bias_lr': (1, 0.0, 0.2), |
|
'box': (1, 0.02, 0.2), |
|
'cls': (1, 0.2, 4.0), |
|
'cls_pw': (1, 0.5, 2.0), |
|
'obj': (1, 0.2, 4.0), |
|
'obj_pw': (1, 0.5, 2.0), |
|
'iou_t': (0, 0.1, 0.7), |
|
'anchor_t': (1, 2.0, 8.0), |
|
'anchors': (2, 2.0, 10.0), |
|
'fl_gamma': (0, 0.0, 2.0), |
|
'hsv_h': (1, 0.0, 0.1), |
|
'hsv_s': (1, 0.0, 0.9), |
|
'hsv_v': (1, 0.0, 0.9), |
|
'degrees': (1, 0.0, 45.0), |
|
'translate': (1, 0.0, 0.9), |
|
'scale': (1, 0.0, 0.9), |
|
'shear': (1, 0.0, 10.0), |
|
'perspective': (0, 0.0, 0.001), |
|
'flipud': (1, 0.0, 1.0), |
|
'fliplr': (0, 0.0, 1.0), |
|
'mosaic': (1, 0.0, 1.0), |
|
'mixup': (1, 0.0, 1.0), |
|
'copy_paste': (1, 0.0, 1.0)} |
|
|
|
with open(opt.hyp, errors='ignore') as f: |
|
hyp = yaml.safe_load(f) |
|
if 'anchors' not in hyp: |
|
hyp['anchors'] = 3 |
|
if opt.noautoanchor: |
|
del hyp['anchors'], meta['anchors'] |
|
opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir) |
|
|
|
evolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv' |
|
if opt.bucket: |
|
os.system(f'gsutil cp gs://{opt.bucket}/evolve.csv {evolve_csv}') |
|
|
|
for _ in range(opt.evolve): |
|
if evolve_csv.exists(): |
|
|
|
parent = 'single' |
|
x = np.loadtxt(evolve_csv, ndmin=2, delimiter=',', skiprows=1) |
|
n = min(5, len(x)) |
|
x = x[np.argsort(-fitness(x))][:n] |
|
w = fitness(x) - fitness(x).min() + 1E-6 |
|
if parent == 'single' or len(x) == 1: |
|
|
|
x = x[random.choices(range(n), weights=w)[0]] |
|
elif parent == 'weighted': |
|
x = (x * w.reshape(n, 1)).sum(0) / w.sum() |
|
|
|
|
|
mp, s = 0.8, 0.2 |
|
npr = np.random |
|
npr.seed(int(time.time())) |
|
g = np.array([meta[k][0] for k in hyp.keys()]) |
|
ng = len(meta) |
|
v = np.ones(ng) |
|
while all(v == 1): |
|
v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0) |
|
for i, k in enumerate(hyp.keys()): |
|
hyp[k] = float(x[i + 7] * v[i]) |
|
|
|
|
|
for k, v in meta.items(): |
|
hyp[k] = max(hyp[k], v[1]) |
|
hyp[k] = min(hyp[k], v[2]) |
|
hyp[k] = round(hyp[k], 5) |
|
|
|
|
|
results = train(hyp.copy(), opt, device, callbacks) |
|
callbacks = Callbacks() |
|
|
|
print_mutation(results, hyp.copy(), save_dir, opt.bucket) |
|
|
|
|
|
plot_evolve(evolve_csv) |
|
LOGGER.info(f'Hyperparameter evolution finished {opt.evolve} generations\n' |
|
f"Results saved to {colorstr('bold', save_dir)}\n" |
|
f'Usage example: $ python train.py --hyp {evolve_yaml}') |
|
|
|
|
|
def run(**kwargs): |
|
|
|
opt = parse_opt(True) |
|
for k, v in kwargs.items(): |
|
setattr(opt, k, v) |
|
main(opt) |
|
return opt |
|
|
|
|
|
if __name__ == "__main__": |
|
opt = parse_opt() |
|
main(opt) |
|
|