appledd / utils /loggers /__init__.py
imkhan107's picture
Upload 98 files
315fa91 verified
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Logging utils
"""
import os
import warnings
import pkg_resources as pkg
import torch
from torch.utils.tensorboard import SummaryWriter
from utils.general import colorstr, cv2
from utils.loggers.clearml.clearml_utils import ClearmlLogger
from utils.loggers.wandb.wandb_utils import WandbLogger
from utils.plots import plot_images, plot_results
from utils.torch_utils import de_parallel
LOGGERS = ('csv', 'tb', 'wandb', 'clearml') # *.csv, TensorBoard, Weights & Biases, ClearML
RANK = int(os.getenv('RANK', -1))
try:
import wandb
assert hasattr(wandb, '__version__') # verify package import not local dir
if pkg.parse_version(wandb.__version__) >= pkg.parse_version('0.12.2') and RANK in {0, -1}:
try:
wandb_login_success = wandb.login(timeout=30)
except wandb.errors.UsageError: # known non-TTY terminal issue
wandb_login_success = False
if not wandb_login_success:
wandb = None
except (ImportError, AssertionError):
wandb = None
try:
import clearml
assert hasattr(clearml, '__version__') # verify package import not local dir
except (ImportError, AssertionError):
clearml = None
class Loggers():
# YOLOv5 Loggers class
def __init__(self, save_dir=None, weights=None, opt=None, hyp=None, logger=None, include=LOGGERS):
self.save_dir = save_dir
self.weights = weights
self.opt = opt
self.hyp = hyp
self.logger = logger # for printing results to console
self.include = include
self.keys = [
'train/box_loss',
'train/obj_loss',
'train/cls_loss', # train loss
'metrics/precision',
'metrics/recall',
'metrics/mAP_0.5',
'metrics/mAP_0.5:0.95', # metrics
'val/box_loss',
'val/obj_loss',
'val/cls_loss', # val loss
'x/lr0',
'x/lr1',
'x/lr2'] # params
self.best_keys = ['best/epoch', 'best/precision', 'best/recall', 'best/mAP_0.5', 'best/mAP_0.5:0.95']
for k in LOGGERS:
setattr(self, k, None) # init empty logger dictionary
self.csv = True # always log to csv
# Messages
if not wandb:
prefix = colorstr('Weights & Biases: ')
s = f"{prefix}run 'pip install wandb' to automatically track and visualize YOLOv5 🚀 runs in Weights & Biases"
self.logger.info(s)
if not clearml:
prefix = colorstr('ClearML: ')
s = f"{prefix}run 'pip install clearml' to automatically track, visualize and remotely train YOLOv5 🚀 runs in ClearML"
self.logger.info(s)
# TensorBoard
s = self.save_dir
if 'tb' in self.include and not self.opt.evolve:
prefix = colorstr('TensorBoard: ')
self.logger.info(f"{prefix}Start with 'tensorboard --logdir {s.parent}', view at http://localhost:6006/")
self.tb = SummaryWriter(str(s))
# W&B
if wandb and 'wandb' in self.include:
wandb_artifact_resume = isinstance(self.opt.resume, str) and self.opt.resume.startswith('wandb-artifact://')
run_id = torch.load(self.weights).get('wandb_id') if self.opt.resume and not wandb_artifact_resume else None
self.opt.hyp = self.hyp # add hyperparameters
self.wandb = WandbLogger(self.opt, run_id)
# temp warn. because nested artifacts not supported after 0.12.10
if pkg.parse_version(wandb.__version__) >= pkg.parse_version('0.12.11'):
s = "YOLOv5 temporarily requires wandb version 0.12.10 or below. Some features may not work as expected."
self.logger.warning(s)
else:
self.wandb = None
# ClearML
if clearml and 'clearml' in self.include:
self.clearml = ClearmlLogger(self.opt, self.hyp)
else:
self.clearml = None
def on_train_start(self):
# Callback runs on train start
pass
def on_pretrain_routine_end(self):
# Callback runs on pre-train routine end
paths = self.save_dir.glob('*labels*.jpg') # training labels
if self.wandb:
self.wandb.log({"Labels": [wandb.Image(str(x), caption=x.name) for x in paths]})
if self.clearml:
pass # ClearML saves these images automatically using hooks
def on_train_batch_end(self, ni, model, imgs, targets, paths, plots):
# Callback runs on train batch end
# ni: number integrated batches (since train start)
if plots:
if ni == 0:
if self.tb and not self.opt.sync_bn: # --sync known issue https://github.com/ultralytics/yolov5/issues/3754
with warnings.catch_warnings():
warnings.simplefilter('ignore') # suppress jit trace warning
self.tb.add_graph(torch.jit.trace(de_parallel(model), imgs[0:1], strict=False), [])
if ni < 3:
f = self.save_dir / f'train_batch{ni}.jpg' # filename
plot_images(imgs, targets, paths, f)
if (self.wandb or self.clearml) and ni == 10:
files = sorted(self.save_dir.glob('train*.jpg'))
if self.wandb:
self.wandb.log({'Mosaics': [wandb.Image(str(f), caption=f.name) for f in files if f.exists()]})
if self.clearml:
self.clearml.log_debug_samples(files, title='Mosaics')
def on_train_epoch_end(self, epoch):
# Callback runs on train epoch end
if self.wandb:
self.wandb.current_epoch = epoch + 1
def on_val_image_end(self, pred, predn, path, names, im):
# Callback runs on val image end
if self.wandb:
self.wandb.val_one_image(pred, predn, path, names, im)
if self.clearml:
self.clearml.log_image_with_boxes(path, pred, names, im)
def on_val_end(self):
# Callback runs on val end
if self.wandb or self.clearml:
files = sorted(self.save_dir.glob('val*.jpg'))
if self.wandb:
self.wandb.log({"Validation": [wandb.Image(str(f), caption=f.name) for f in files]})
if self.clearml:
self.clearml.log_debug_samples(files, title='Validation')
def on_fit_epoch_end(self, vals, epoch, best_fitness, fi):
# Callback runs at the end of each fit (train+val) epoch
x = dict(zip(self.keys, vals))
if self.csv:
file = self.save_dir / 'results.csv'
n = len(x) + 1 # number of cols
s = '' if file.exists() else (('%20s,' * n % tuple(['epoch'] + self.keys)).rstrip(',') + '\n') # add header
with open(file, 'a') as f:
f.write(s + ('%20.5g,' * n % tuple([epoch] + vals)).rstrip(',') + '\n')
if self.tb:
for k, v in x.items():
self.tb.add_scalar(k, v, epoch)
elif self.clearml: # log to ClearML if TensorBoard not used
for k, v in x.items():
title, series = k.split('/')
self.clearml.task.get_logger().report_scalar(title, series, v, epoch)
if self.wandb:
if best_fitness == fi:
best_results = [epoch] + vals[3:7]
for i, name in enumerate(self.best_keys):
self.wandb.wandb_run.summary[name] = best_results[i] # log best results in the summary
self.wandb.log(x)
self.wandb.end_epoch(best_result=best_fitness == fi)
if self.clearml:
self.clearml.current_epoch_logged_images = set() # reset epoch image limit
self.clearml.current_epoch += 1
def on_model_save(self, last, epoch, final_epoch, best_fitness, fi):
# Callback runs on model save event
if self.wandb:
if ((epoch + 1) % self.opt.save_period == 0 and not final_epoch) and self.opt.save_period != -1:
self.wandb.log_model(last.parent, self.opt, epoch, fi, best_model=best_fitness == fi)
if self.clearml:
if ((epoch + 1) % self.opt.save_period == 0 and not final_epoch) and self.opt.save_period != -1:
self.clearml.task.update_output_model(model_path=str(last),
model_name='Latest Model',
auto_delete_file=False)
def on_train_end(self, last, best, plots, epoch, results):
# Callback runs on training end
if plots:
plot_results(file=self.save_dir / 'results.csv') # save results.png
files = ['results.png', 'confusion_matrix.png', *(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))]
files = [(self.save_dir / f) for f in files if (self.save_dir / f).exists()] # filter
self.logger.info(f"Results saved to {colorstr('bold', self.save_dir)}")
if self.tb and not self.clearml: # These images are already captured by ClearML by now, we don't want doubles
for f in files:
self.tb.add_image(f.stem, cv2.imread(str(f))[..., ::-1], epoch, dataformats='HWC')
if self.wandb:
self.wandb.log(dict(zip(self.keys[3:10], results)))
self.wandb.log({"Results": [wandb.Image(str(f), caption=f.name) for f in files]})
# Calling wandb.log. TODO: Refactor this into WandbLogger.log_model
if not self.opt.evolve:
wandb.log_artifact(str(best if best.exists() else last),
type='model',
name=f'run_{self.wandb.wandb_run.id}_model',
aliases=['latest', 'best', 'stripped'])
self.wandb.finish_run()
if self.clearml:
# Save the best model here
if not self.opt.evolve:
self.clearml.task.update_output_model(model_path=str(best if best.exists() else last),
name='Best Model')
def on_params_update(self, params):
# Update hyperparams or configs of the experiment
# params: A dict containing {param: value} pairs
if self.wandb:
self.wandb.wandb_run.config.update(params, allow_val_change=True)