|
|
|
""" |
|
PyTorch utils |
|
""" |
|
|
|
import math |
|
import os |
|
import platform |
|
import subprocess |
|
import time |
|
import warnings |
|
from contextlib import contextmanager |
|
from copy import deepcopy |
|
from pathlib import Path |
|
|
|
import torch |
|
import torch.distributed as dist |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.nn.parallel import DistributedDataParallel as DDP |
|
|
|
from utils.general import LOGGER, check_version, colorstr, file_date, git_describe |
|
|
|
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) |
|
RANK = int(os.getenv('RANK', -1)) |
|
WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1)) |
|
|
|
try: |
|
import thop |
|
except ImportError: |
|
thop = None |
|
|
|
|
|
warnings.filterwarnings('ignore', message='User provided device_type of \'cuda\', but CUDA is not available. Disabling') |
|
|
|
|
|
def smart_DDP(model): |
|
|
|
assert not check_version(torch.__version__, '1.12.0', pinned=True), \ |
|
'torch==1.12.0 torchvision==0.13.0 DDP training is not supported due to a known issue. ' \ |
|
'Please upgrade or downgrade torch to use DDP. See https://github.com/ultralytics/yolov5/issues/8395' |
|
if check_version(torch.__version__, '1.11.0'): |
|
return DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK, static_graph=True) |
|
else: |
|
return DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK) |
|
|
|
|
|
@contextmanager |
|
def torch_distributed_zero_first(local_rank: int): |
|
|
|
if local_rank not in [-1, 0]: |
|
dist.barrier(device_ids=[local_rank]) |
|
yield |
|
if local_rank == 0: |
|
dist.barrier(device_ids=[0]) |
|
|
|
|
|
def device_count(): |
|
|
|
assert platform.system() in ('Linux', 'Windows'), 'device_count() only supported on Linux or Windows' |
|
try: |
|
cmd = 'nvidia-smi -L | wc -l' if platform.system() == 'Linux' else 'nvidia-smi -L | find /c /v ""' |
|
return int(subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1]) |
|
except Exception: |
|
return 0 |
|
|
|
|
|
def select_device(device='', batch_size=0, newline=True): |
|
|
|
s = f'YOLOv5 🚀 {git_describe() or file_date()} Python-{platform.python_version()} torch-{torch.__version__} ' |
|
device = str(device).strip().lower().replace('cuda:', '').replace('none', '') |
|
cpu = device == 'cpu' |
|
mps = device == 'mps' |
|
if cpu or mps: |
|
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' |
|
elif device: |
|
os.environ['CUDA_VISIBLE_DEVICES'] = device |
|
assert torch.cuda.is_available() and torch.cuda.device_count() >= len(device.replace(',', '')), \ |
|
f"Invalid CUDA '--device {device}' requested, use '--device cpu' or pass valid CUDA device(s)" |
|
|
|
if not (cpu or mps) and torch.cuda.is_available(): |
|
devices = device.split(',') if device else '0' |
|
n = len(devices) |
|
if n > 1 and batch_size > 0: |
|
assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}' |
|
space = ' ' * (len(s) + 1) |
|
for i, d in enumerate(devices): |
|
p = torch.cuda.get_device_properties(i) |
|
s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / (1 << 20):.0f}MiB)\n" |
|
arg = 'cuda:0' |
|
elif mps and getattr(torch, 'has_mps', False) and torch.backends.mps.is_available(): |
|
s += 'MPS\n' |
|
arg = 'mps' |
|
else: |
|
s += 'CPU\n' |
|
arg = 'cpu' |
|
|
|
if not newline: |
|
s = s.rstrip() |
|
LOGGER.info(s) |
|
return torch.device(arg) |
|
|
|
|
|
def time_sync(): |
|
|
|
if torch.cuda.is_available(): |
|
torch.cuda.synchronize() |
|
return time.time() |
|
|
|
|
|
def profile(input, ops, n=10, device=None): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
results = [] |
|
if not isinstance(device, torch.device): |
|
device = select_device(device) |
|
print(f"{'Params':>12s}{'GFLOPs':>12s}{'GPU_mem (GB)':>14s}{'forward (ms)':>14s}{'backward (ms)':>14s}" |
|
f"{'input':>24s}{'output':>24s}") |
|
|
|
for x in input if isinstance(input, list) else [input]: |
|
x = x.to(device) |
|
x.requires_grad = True |
|
for m in ops if isinstance(ops, list) else [ops]: |
|
m = m.to(device) if hasattr(m, 'to') else m |
|
m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m |
|
tf, tb, t = 0, 0, [0, 0, 0] |
|
try: |
|
flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 |
|
except Exception: |
|
flops = 0 |
|
|
|
try: |
|
for _ in range(n): |
|
t[0] = time_sync() |
|
y = m(x) |
|
t[1] = time_sync() |
|
try: |
|
_ = (sum(yi.sum() for yi in y) if isinstance(y, list) else y).sum().backward() |
|
t[2] = time_sync() |
|
except Exception: |
|
|
|
t[2] = float('nan') |
|
tf += (t[1] - t[0]) * 1000 / n |
|
tb += (t[2] - t[1]) * 1000 / n |
|
mem = torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0 |
|
s_in, s_out = (tuple(x.shape) if isinstance(x, torch.Tensor) else 'list' for x in (x, y)) |
|
p = sum(x.numel() for x in m.parameters()) if isinstance(m, nn.Module) else 0 |
|
print(f'{p:12}{flops:12.4g}{mem:>14.3f}{tf:14.4g}{tb:14.4g}{str(s_in):>24s}{str(s_out):>24s}') |
|
results.append([p, flops, mem, tf, tb, s_in, s_out]) |
|
except Exception as e: |
|
print(e) |
|
results.append(None) |
|
torch.cuda.empty_cache() |
|
return results |
|
|
|
|
|
def is_parallel(model): |
|
|
|
return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel) |
|
|
|
|
|
def de_parallel(model): |
|
|
|
return model.module if is_parallel(model) else model |
|
|
|
|
|
def initialize_weights(model): |
|
for m in model.modules(): |
|
t = type(m) |
|
if t is nn.Conv2d: |
|
pass |
|
elif t is nn.BatchNorm2d: |
|
m.eps = 1e-3 |
|
m.momentum = 0.03 |
|
elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]: |
|
m.inplace = True |
|
|
|
|
|
def find_modules(model, mclass=nn.Conv2d): |
|
|
|
return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)] |
|
|
|
|
|
def sparsity(model): |
|
|
|
a, b = 0, 0 |
|
for p in model.parameters(): |
|
a += p.numel() |
|
b += (p == 0).sum() |
|
return b / a |
|
|
|
|
|
def prune(model, amount=0.3): |
|
|
|
import torch.nn.utils.prune as prune |
|
print('Pruning model... ', end='') |
|
for name, m in model.named_modules(): |
|
if isinstance(m, nn.Conv2d): |
|
prune.l1_unstructured(m, name='weight', amount=amount) |
|
prune.remove(m, 'weight') |
|
print(' %.3g global sparsity' % sparsity(model)) |
|
|
|
|
|
def fuse_conv_and_bn(conv, bn): |
|
|
|
fusedconv = nn.Conv2d(conv.in_channels, |
|
conv.out_channels, |
|
kernel_size=conv.kernel_size, |
|
stride=conv.stride, |
|
padding=conv.padding, |
|
groups=conv.groups, |
|
bias=True).requires_grad_(False).to(conv.weight.device) |
|
|
|
|
|
w_conv = conv.weight.clone().view(conv.out_channels, -1) |
|
w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var))) |
|
fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape)) |
|
|
|
|
|
b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias |
|
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps)) |
|
fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn) |
|
|
|
return fusedconv |
|
|
|
|
|
def model_info(model, verbose=False, img_size=640): |
|
|
|
n_p = sum(x.numel() for x in model.parameters()) |
|
n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) |
|
if verbose: |
|
print(f"{'layer':>5} {'name':>40} {'gradient':>9} {'parameters':>12} {'shape':>20} {'mu':>10} {'sigma':>10}") |
|
for i, (name, p) in enumerate(model.named_parameters()): |
|
name = name.replace('module_list.', '') |
|
print('%5g %40s %9s %12g %20s %10.3g %10.3g' % |
|
(i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std())) |
|
|
|
try: |
|
from thop import profile |
|
stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32 |
|
img = torch.zeros((1, model.yaml.get('ch', 3), stride, stride), device=next(model.parameters()).device) |
|
flops = profile(deepcopy(model), inputs=(img,), verbose=False)[0] / 1E9 * 2 |
|
img_size = img_size if isinstance(img_size, list) else [img_size, img_size] |
|
fs = ', %.1f GFLOPs' % (flops * img_size[0] / stride * img_size[1] / stride) |
|
except Exception: |
|
fs = '' |
|
|
|
name = Path(model.yaml_file).stem.replace('yolov5', 'YOLOv5') if hasattr(model, 'yaml_file') else 'Model' |
|
LOGGER.info(f"{name} summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}") |
|
|
|
|
|
def scale_img(img, ratio=1.0, same_shape=False, gs=32): |
|
|
|
if ratio == 1.0: |
|
return img |
|
h, w = img.shape[2:] |
|
s = (int(h * ratio), int(w * ratio)) |
|
img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) |
|
if not same_shape: |
|
h, w = (math.ceil(x * ratio / gs) * gs for x in (h, w)) |
|
return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) |
|
|
|
|
|
def copy_attr(a, b, include=(), exclude=()): |
|
|
|
for k, v in b.__dict__.items(): |
|
if (len(include) and k not in include) or k.startswith('_') or k in exclude: |
|
continue |
|
else: |
|
setattr(a, k, v) |
|
|
|
|
|
def smart_optimizer(model, name='Adam', lr=0.001, momentum=0.9, decay=1e-5): |
|
|
|
g = [], [], [] |
|
bn = tuple(v for k, v in nn.__dict__.items() if 'Norm' in k) |
|
for v in model.modules(): |
|
if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): |
|
g[2].append(v.bias) |
|
if isinstance(v, bn): |
|
g[1].append(v.weight) |
|
elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter): |
|
g[0].append(v.weight) |
|
|
|
if name == 'Adam': |
|
optimizer = torch.optim.Adam(g[2], lr=lr, betas=(momentum, 0.999)) |
|
elif name == 'AdamW': |
|
optimizer = torch.optim.AdamW(g[2], lr=lr, betas=(momentum, 0.999), weight_decay=0.0) |
|
elif name == 'RMSProp': |
|
optimizer = torch.optim.RMSprop(g[2], lr=lr, momentum=momentum) |
|
elif name == 'SGD': |
|
optimizer = torch.optim.SGD(g[2], lr=lr, momentum=momentum, nesterov=True) |
|
else: |
|
raise NotImplementedError(f'Optimizer {name} not implemented.') |
|
|
|
optimizer.add_param_group({'params': g[0], 'weight_decay': decay}) |
|
optimizer.add_param_group({'params': g[1], 'weight_decay': 0.0}) |
|
LOGGER.info(f"{colorstr('optimizer:')} {type(optimizer).__name__}(lr={lr}) with parameter groups " |
|
f"{len(g[1])} weight(decay=0.0), {len(g[0])} weight(decay={decay}), {len(g[2])} bias") |
|
return optimizer |
|
|
|
|
|
def smart_resume(ckpt, optimizer, ema=None, weights='yolov5s.pt', epochs=300, resume=True): |
|
|
|
best_fitness = 0.0 |
|
start_epoch = ckpt['epoch'] + 1 |
|
if ckpt['optimizer'] is not None: |
|
optimizer.load_state_dict(ckpt['optimizer']) |
|
best_fitness = ckpt['best_fitness'] |
|
if ema and ckpt.get('ema'): |
|
ema.ema.load_state_dict(ckpt['ema'].float().state_dict()) |
|
ema.updates = ckpt['updates'] |
|
if resume: |
|
assert start_epoch > 0, f'{weights} training to {epochs} epochs is finished, nothing to resume.\n' \ |
|
f"Start a new training without --resume, i.e. 'python train.py --weights {weights}'" |
|
LOGGER.info(f'Resuming training from {weights} from epoch {start_epoch} to {epochs} total epochs') |
|
if epochs < start_epoch: |
|
LOGGER.info(f"{weights} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {epochs} more epochs.") |
|
epochs += ckpt['epoch'] |
|
return best_fitness, start_epoch, epochs |
|
|
|
|
|
class EarlyStopping: |
|
|
|
def __init__(self, patience=30): |
|
self.best_fitness = 0.0 |
|
self.best_epoch = 0 |
|
self.patience = patience or float('inf') |
|
self.possible_stop = False |
|
|
|
def __call__(self, epoch, fitness): |
|
if fitness >= self.best_fitness: |
|
self.best_epoch = epoch |
|
self.best_fitness = fitness |
|
delta = epoch - self.best_epoch |
|
self.possible_stop = delta >= (self.patience - 1) |
|
stop = delta >= self.patience |
|
if stop: |
|
LOGGER.info(f'Stopping training early as no improvement observed in last {self.patience} epochs. ' |
|
f'Best results observed at epoch {self.best_epoch}, best model saved as best.pt.\n' |
|
f'To update EarlyStopping(patience={self.patience}) pass a new patience value, ' |
|
f'i.e. `python train.py --patience 300` or use `--patience 0` to disable EarlyStopping.') |
|
return stop |
|
|
|
|
|
class ModelEMA: |
|
""" Updated Exponential Moving Average (EMA) from https://github.com/rwightman/pytorch-image-models |
|
Keeps a moving average of everything in the model state_dict (parameters and buffers) |
|
For EMA details see https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage |
|
""" |
|
|
|
def __init__(self, model, decay=0.9999, tau=2000, updates=0): |
|
|
|
self.ema = deepcopy(de_parallel(model)).eval() |
|
|
|
|
|
self.updates = updates |
|
self.decay = lambda x: decay * (1 - math.exp(-x / tau)) |
|
for p in self.ema.parameters(): |
|
p.requires_grad_(False) |
|
|
|
def update(self, model): |
|
|
|
with torch.no_grad(): |
|
self.updates += 1 |
|
d = self.decay(self.updates) |
|
|
|
msd = de_parallel(model).state_dict() |
|
for k, v in self.ema.state_dict().items(): |
|
if v.dtype.is_floating_point: |
|
v *= d |
|
v += (1 - d) * msd[k].detach() |
|
|
|
def update_attr(self, model, include=(), exclude=('process_group', 'reducer')): |
|
|
|
copy_attr(self.ema, model, include, exclude) |
|
|