MedDocAI / app.py
zR
token check
b694633
raw
history blame
4.85 kB
import subprocess
# Installing flash_attn
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
from threading import Thread
import spaces
import gradio as gr
import torch
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
StoppingCriteria,
StoppingCriteriaList,
TextIteratorStreamer
)
model = AutoModelForCausalLM.from_pretrained("THUDM/longwriter-glm4-9b", trust_remote_code=True, device_map='auto')
tokenizer = AutoTokenizer.from_pretrained("THUDM/longwriter-glm4-9b", trust_remote_code=True)
class StopOnTokens(StoppingCriteria):
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
stop_ids = model.config.eos_token_id
for stop_id in stop_ids:
if input_ids[0][-1] == stop_id:
return True
return False
@spaces.GPU(duration=120)
def predict(history, prompt, max_length, top_p, temperature):
stop = StopOnTokens()
messages = []
if prompt:
messages.append({"role": "system", "content": prompt})
for idx, (user_msg, model_msg) in enumerate(history):
if prompt and idx == 0:
continue
if idx == len(history) - 1 and not model_msg:
query = user_msg
break
if user_msg:
messages.append({"role": "user", "content": user_msg})
if model_msg:
messages.append({"role": "assistant", "content": model_msg})
model_inputs = tokenizer.build_chat_input(query, history=messages, role='user').input_ids.to(
next(model.parameters()).device)
streamer = TextIteratorStreamer(tokenizer, timeout=600, skip_prompt=True)
eos_token_id = [tokenizer.eos_token_id, tokenizer.get_command("<|user|>"),
tokenizer.get_command("<|observation|>")]
generate_kwargs = {
"input_ids": model_inputs,
"streamer": streamer,
"max_new_tokens": max_length,
"do_sample": True,
"top_p": top_p,
"temperature": temperature,
"stopping_criteria": StoppingCriteriaList([stop]),
"repetition_penalty": 1,
"eos_token_id": eos_token_id,
}
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
for new_token in streamer:
if new_token and '<|user|>' not in new_token:
history[-1][1] += new_token
yield history
with gr.Blocks() as demo:
gr.Markdown(
"""
<div style="text-align: center; font-size: 32px; font-weight: bold; margin-bottom: 20px;">
longwriter-glm4-9b Huggingface Space🤗
</div>
<div style="text-align: center;">
<a href="https://huggingface.co/THUDM/LongWriter-glm4-9b">🤗 Model Hub</a> |
<a href="https://github.com/THUDM/LongWriter">🌐 Github</a> |
<a href="https://arxiv.org/pdf/2408.07055">📜 arxiv </a>
</div>
<div style="text-align: center; font-size: 15px; font-weight: bold; color: red; margin-bottom: 20px;">
⚠️ This is just a basic demo. Due to the scheduling limitations of Zero GPU, the output length is restricted to under 4K. If you wish to experience the full capabilities of the model (output exceeding 10K), please deploy the model yourself. Thank you for your understanding.
</div>
"""
)
chatbot = gr.Chatbot()
with gr.Row():
with gr.Column(scale=3):
with gr.Column(scale=12):
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10, container=False)
with gr.Column(min_width=32, scale=1):
submitBtn = gr.Button("Submit")
with gr.Column(scale=1):
prompt_input = gr.Textbox(show_label=False, placeholder="Prompt", lines=10, container=False)
pBtn = gr.Button("Set Prompt")
with gr.Column(scale=1):
emptyBtn = gr.Button("Clear History")
max_length = gr.Slider(0, 128000, value=4096, step=1.0, label="Maximum length(Input + Output)", interactive=True)
top_p = gr.Slider(0, 1, value=0.8, step=0.01, label="Top P", interactive=True)
temperature = gr.Slider(0.01, 1, value=0.6, step=0.01, label="Temperature", interactive=True)
def user(query, history):
return "", history + [[query, ""]]
def set_prompt(prompt_text):
return [[prompt_text, "Set prompt successfully"]]
pBtn.click(set_prompt, inputs=[prompt_input], outputs=chatbot)
submitBtn.click(user, [user_input, chatbot], [user_input, chatbot], queue=False).then(
predict, [chatbot, prompt_input, max_length, top_p, temperature], chatbot
)
emptyBtn.click(lambda: (None, None), None, [chatbot, prompt_input], queue=False)
demo.queue()
demo.launch()