Spaces:
Build error
Build error
import os | |
os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
import streamlit as st | |
import torch | |
from docquery.pipeline import get_pipeline | |
from docquery.document import load_bytes, load_document | |
def ensure_list(x): | |
if isinstance(x, list): | |
return x | |
else: | |
return [x] | |
def construct_pipeline(): | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
ret = get_pipeline(device=device) | |
return ret | |
def run_pipeline(question, document): | |
return construct_pipeline()(question=question, **document.context) | |
st.markdown("# DocQuery: Query Documents w/ NLP") | |
if "document" not in st.session_state: | |
st.session_state["document"] = None | |
input_type = st.radio("Pick an input type", ["Upload", "URL"], horizontal=True) | |
def load_file_cb(): | |
if st.session_state.file_input is None: | |
return | |
file = st.session_state.file_input | |
with loading_placeholder: | |
with st.spinner("Processing..."): | |
document = load_bytes(file, file.name) | |
_ = document.context | |
st.session_state.document = document | |
def load_url_cb(): | |
if st.session_state.url_input is None: | |
return | |
url = st.session_state.url_input | |
with loading_placeholder: | |
with st.spinner("Downloading..."): | |
document = load_document(url) | |
with st.spinner("Processing..."): | |
_ = document.context | |
st.session_state.document = document | |
if input_type == "Upload": | |
file = st.file_uploader( | |
"Upload a PDF or Image document", key="file_input", on_change=load_file_cb | |
) | |
elif input_type == "URL": | |
# url = st.text_input("URL", "", on_change=load_url_callback, key="url_input") | |
url = st.text_input("URL", "", key="url_input", on_change=load_url_cb) | |
question = st.text_input("QUESTION", "") | |
document = st.session_state.document | |
loading_placeholder = st.empty() | |
if document is not None: | |
col1, col2 = st.columns(2) | |
col1.image(document.preview, use_column_width=True) | |
if document is not None and question is not None and len(question) > 0: | |
predictions = run_pipeline(question=question, document=document) | |
col2.header("Answers") | |
for p in ensure_list(predictions): | |
col2.subheader(f"{ p['answer'] }: ({round(p['score'] * 100, 1)}%)") | |
"DocQuery uses LayoutLMv1 fine-tuned on DocVQA, a document visual question answering dataset, as well as SQuAD, which boosts its English-language comprehension. To use it, simply upload an image or PDF, type a question, and click 'submit', or click one of the examples to load them." | |
"[Github Repo](https://github.com/impira/docquery)" | |