File size: 8,219 Bytes
91644ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# https://huggingface.co/deepkyu/ml-talking-face
import os
import subprocess

REST_IP = os.environ['REST_IP']
SERVICE_PORT = int(os.environ['SERVICE_PORT'])
TRANSLATION_APIKEY_URL = os.environ['TRANSLATION_APIKEY_URL']
GOOGLE_APPLICATION_CREDENTIALS = os.environ['GOOGLE_APPLICATION_CREDENTIALS']
subprocess.call(f"wget --no-check-certificate -O {GOOGLE_APPLICATION_CREDENTIALS} {TRANSLATION_APIKEY_URL}", shell=True)

TOXICITY_THRESHOLD = float(os.getenv('TOXICITY_THRESHOLD', 0.7))

import gradio as gr
from toxicity_estimator import PerspectiveAPI
from translator import Translator
from client_rest import RestAPIApplication
from pathlib import Path
import argparse
import threading
import yaml

TITLE = Path("docs/title.txt").read_text()
DESCRIPTION = Path("docs/description.md").read_text()
    
    
class GradioApplication:
    def __init__(self, rest_ip, rest_port, max_seed):
        self.lang_list = {
            'ko': 'ko_KR',
            'en': 'en_US',
            'ja': 'ja_JP',
            'zh': 'zh_CN',
            'zh-CN': 'zh_CN'
        }
        self.background_list = [None,
                                "background_image/cvpr.png",
                                "background_image/black.png",
                                "background_image/river.mp4",
                                "background_image/sky.mp4"]
        
        self.perspective_api = PerspectiveAPI()
        self.translator = Translator()
        self.rest_application = RestAPIApplication(rest_ip, rest_port)
        self.output_dir = Path("output_file")

        inputs = prepare_input()
        outputs = prepare_output()

        self.iface = gr.Interface(fn=self.infer,
                                  title=TITLE,
                                  description=DESCRIPTION,
                                  inputs=inputs,
                                  outputs=outputs,
                                  allow_flagging='never',
                                  article=Path("docs/article.md").read_text())

        self.max_seed = max_seed
        self._file_seed = 0
        self.lock = threading.Lock()
        
    
    def _get_file_seed(self):
        return f"{self._file_seed % self.max_seed:02d}"

    def _reset_file_seed(self):
        self._file_seed = 0

    def _counter_file_seed(self):
        with self.lock:
            self._file_seed += 1

    def get_lang_code(self, lang):
        return self.lang_list[lang]

    def get_background_data(self, background_index):
        # get background filename and its extension
        data_path = self.background_list[background_index]

        if data_path is not None:
            with open(data_path, 'rb') as rf:
                background_data = rf.read()
            is_video_background = str(data_path).endswith(".mp4")
        else:
            background_data = None
            is_video_background = False

        return background_data, is_video_background
    
    @staticmethod
    def return_format(toxicity_prob, target_text, lang_dest, video_filename, detail=""):
        return {'Toxicity': toxicity_prob}, f"Language: {lang_dest}\nText: {target_text}\n-\nDetails: {detail}", str(video_filename)   

    def infer(self, text, lang, duration_rate, action, background_index):
        self._counter_file_seed()
        print(f"File Seed: {self._file_seed}")
        toxicity_prob = 0.0
        target_text = ""
        lang_dest = ""
        video_filename = "vacant.mp4"
        
        # Toxicity estimation
        try:
            toxicity_prob = self.perspective_api.get_score(text)
        except Exception as e:  # when Perspective API doesn't work
            pass
        
        if toxicity_prob > TOXICITY_THRESHOLD:
            detail = "Sorry, it seems that the input text is too toxic."
            return self.return_format(toxicity_prob, target_text, lang_dest, video_filename, detail=f"Error: {detail}")
        
        # Google Translate API
        try:
            target_text, lang_dest = self.translator.get_translation(text, lang)
        except Exception as e:
            target_text = ""
            lang_dest = ""
            detail = f"Error from language translation: ({e})"
            return self.return_format(toxicity_prob, target_text, lang_dest, video_filename, detail=f"Error: {detail}")
        
        try:
            self.translator.length_check(lang_dest, target_text)  # assertion check
        except AssertionError as e:
            return self.return_format(toxicity_prob, target_text, lang_dest, video_filename, detail=f"Error: {str(e)}")
            
        lang_rpc_code = self.get_lang_code(lang_dest)

        # Video Inference
        background_data, is_video_background = self.get_background_data(background_index)
        
        video_data = self.rest_application.get_video(target_text, lang_rpc_code, duration_rate, action.lower(),
                                                     background_data, is_video_background)
        print(f"Video data size: {len(video_data)}")

        video_filename = self.output_dir / f"{self._file_seed:02d}.mkv"
        with open(video_filename, "wb") as video_file:
            video_file.write(video_data)
        
        return self.return_format(toxicity_prob, target_text, lang_dest, video_filename)     

    def run(self, server_port=7860, share=False):
        try:
            self.iface.launch(height=900,
                              share=share, server_port=server_port,
                              enable_queue=True)
        
        except KeyboardInterrupt:
            gr.close_all()


def prepare_input():
    text_input = gr.Textbox(lines=2,
                            placeholder="Type your text with English, Chinese, Korean, and Japanese.",
                            value="Hello, this is demonstration for talking face generation "
                            "with multilingual text-to-speech.",
                            label="Text")
    lang_input = gr.Radio(['Korean', 'English', 'Japanese', 'Chinese'],
                          type='value',
                          value=None,
                          label="Language")
    duration_rate_input = gr.Slider(minimum=0.8,
                                    maximum=1.2,
                                    step=0.01,
                                    value=1.0,
                                    label="Duration (The bigger the value, the slower the speech)")
    action_input = gr.Radio(['Default', 'Hand', 'BothHand', 'HandDown', 'Sorry'],
                            type='value',
                            value='Default',
                            label="Select an action ...")
    background_input = gr.Radio(['None', 'CVPR', 'Black', 'River', 'Sky'],
                                type='index',
                                value='None',
                                label="Select a background image/video ...")

    return [text_input, lang_input, duration_rate_input,
            action_input, background_input]


def prepare_output():
    toxicity_output = gr.Label(num_top_classes=1, label="Toxicity (from Perspective API)")
    translation_result_otuput = gr.Textbox(type="str", label="Translation Result")
    video_output = gr.Video(format='mp4')
    return [toxicity_output, translation_result_otuput, video_output]


def parse_args():
    parser = argparse.ArgumentParser(
        description='GRADIO DEMO for talking face generation submitted to CVPR2022')
    parser.add_argument('-p', '--port', dest='gradio_port', type=int, default=7860, help="Port for gradio")
    parser.add_argument('--rest_ip', type=str, default=REST_IP, help="IP for REST API")
    parser.add_argument('--rest_port', type=int, default=SERVICE_PORT, help="Port for REST API")
    parser.add_argument('--max_seed', type=int, default=20, help="Max seed for saving video")
    parser.add_argument('--share', action='store_true', help='get publicly sharable link')
    args = parser.parse_args()
    return args    


if __name__ == '__main__':
    args = parse_args()
    
    gradio_application = GradioApplication(args.rest_ip, args.rest_port, args.max_seed)
    gradio_application.run(server_port=args.gradio_port, share=args.share)