File size: 3,894 Bytes
4c32703
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
from transformers import AutoModel, AutoTokenizer
import gradio as gr
import mdtex2html

# CPUζŽ¨η†ιƒ¨η½²οΌŒε¦‚ζžœζ˜―GPUζŽ¨η†ε―δ»₯η›΄ζŽ₯使用 β€œTHUDM/chatglm-6b”
checkpoint = "THUDM/chatglm-6b-int4"
# checkpoint = "/innev/open-ai/huggingface/models/THUDM/chatglm-6b-int4"
tokenizer = AutoTokenizer.from_pretrained(checkpoint, trust_remote_code=True)
model = AutoModel.from_pretrained(checkpoint, trust_remote_code=True).float()
# model = AutoModel.from_pretrained(checkpoint, trust_remote_code=True).half().to('mps')
model = model.eval()

"""Override Chatbot.postprocess"""


def postprocess(self, y):
    if y is None:
        return []
    for i, (message, response) in enumerate(y):
        y[i] = (
            None if message is None else mdtex2html.convert((message)),
            None if response is None else mdtex2html.convert(response),
        )
    return y


gr.Chatbot.postprocess = postprocess


def parse_text(text):
    """copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/"""
    lines = text.split("\n")
    lines = [line for line in lines if line != ""]
    count = 0
    for i, line in enumerate(lines):
        if "```" in line:
            count += 1
            items = line.split('`')
            if count % 2 == 1:
                lines[i] = f'<pre><code class="language-{items[-1]}">'
            else:
                lines[i] = f'<br></code></pre>'
        else:
            if i > 0:
                if count % 2 == 1:
                    line = line.replace("`", "\`")
                    line = line.replace("<", "&lt;")
                    line = line.replace(">", "&gt;")
                    line = line.replace(" ", "&nbsp;")
                    line = line.replace("*", "&ast;")
                    line = line.replace("_", "&lowbar;")
                    line = line.replace("-", "&#45;")
                    line = line.replace(".", "&#46;")
                    line = line.replace("!", "&#33;")
                    line = line.replace("(", "&#40;")
                    line = line.replace(")", "&#41;")
                    line = line.replace("$", "&#36;")
                lines[i] = "<br>"+line
    text = "".join(lines)
    return text


def predict(input, chatbot, max_length, top_p, temperature, history):
    chatbot.append((parse_text(input), ""))
    for response, history in model.stream_chat(tokenizer, input, history, max_length=max_length, top_p=top_p,
                                               temperature=temperature):
        chatbot[-1] = (parse_text(input), parse_text(response))       

        yield chatbot, history


def reset_user_input():
    return gr.update(value='')


def reset_state():
    return [], []


with gr.Blocks() as demo:
    gr.HTML("""<h1 align="center">ChatGLM</h1>""")

    chatbot = gr.Chatbot()
    with gr.Row():
        with gr.Column(scale=4):
            with gr.Column(scale=12):
                user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style(
                    container=False)
            with gr.Column(min_width=32, scale=1):
                submitBtn = gr.Button("Submit", variant="primary")
        with gr.Column(scale=1):
            emptyBtn = gr.Button("Clear History")
            max_length = gr.Slider(0, 4096, value=2048, step=1.0, label="Maximum length", interactive=True)
            top_p = gr.Slider(0, 1, value=0.7, step=0.01, label="Top P", interactive=True)
            temperature = gr.Slider(0, 1, value=0.95, step=0.01, label="Temperature", interactive=True)

    history = gr.State([])

    submitBtn.click(predict, [user_input, chatbot, max_length, top_p, temperature, history], [chatbot, history],
                    show_progress=True)
    submitBtn.click(reset_user_input, [], [user_input])

    emptyBtn.click(reset_state, outputs=[chatbot, history], show_progress=True)

demo.queue().launch(share=False, inbrowser=True)