File size: 9,892 Bytes
e3a7134
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import time
import os
import random
import numpy as np
import torch
import torch.utils.data

import commons 
from mel_processing import spectrogram_torch
from utils import load_wav_to_torch, load_filepaths_and_text
from text import text_to_sequence, cleaned_text_to_sequence

"""Multi speaker version"""
class TextAudioSpeakerLoader(torch.utils.data.Dataset):
    """
        1) loads audio, speaker_id, text pairs
        2) normalizes text and converts them to sequences of integers
        3) computes spectrograms from audio files.
    """
    def __init__(self, audiopaths_sid_text, hparams):
        self.audiopaths_sid_text = load_filepaths_and_text(audiopaths_sid_text)
        self.text_cleaners = hparams.text_cleaners
        self.max_wav_value = hparams.max_wav_value
        self.sampling_rate = hparams.sampling_rate
        self.filter_length  = hparams.filter_length
        self.hop_length     = hparams.hop_length
        self.win_length     = hparams.win_length
        self.sampling_rate  = hparams.sampling_rate

        self.cleaned_text = getattr(hparams, "cleaned_text", False)

        self.add_blank = hparams.add_blank
        self.min_text_len = getattr(hparams, "min_text_len", 1)
        self.max_text_len = getattr(hparams, "max_text_len", 190)

        random.seed(1234)
        random.shuffle(self.audiopaths_sid_text)
        self._filter()

    def _filter(self):
        """
        Filter text & store spec lengths
        """
        # Store spectrogram lengths for Bucketing
        # wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
        # spec_length = wav_length // hop_length

        audiopaths_sid_text_new = []
        lengths = []
        for audiopath, sid, text in self.audiopaths_sid_text:
            if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
                audiopaths_sid_text_new.append([audiopath, sid, text])
                lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length))
        self.audiopaths_sid_text = audiopaths_sid_text_new
        self.lengths = lengths

    def get_audio_text_speaker_pair(self, audiopath_sid_text):
        # separate filename, speaker_id and text
        audiopath, sid, text = audiopath_sid_text[0], audiopath_sid_text[1], audiopath_sid_text[2]
        text = self.get_text(text)
        spec, wav = self.get_audio(audiopath)
        sid = self.get_sid(sid)
        emo = torch.FloatTensor(np.load(audiopath+".emo.npy"))
        return (text, spec, wav, sid, emo)

    def get_audio(self, filename):
        audio, sampling_rate = load_wav_to_torch(filename)
        if sampling_rate != self.sampling_rate:
            raise ValueError("{} {} SR doesn't match target {} SR".format(
                sampling_rate, self.sampling_rate))
        audio_norm = audio / self.max_wav_value
        audio_norm = audio_norm.unsqueeze(0)
        spec_filename = filename.replace(".wav", ".spec.pt")
        if os.path.exists(spec_filename):
            spec = torch.load(spec_filename)
        else:
            spec = spectrogram_torch(audio_norm, self.filter_length,
                self.sampling_rate, self.hop_length, self.win_length,
                center=False)
            spec = torch.squeeze(spec, 0)
            torch.save(spec, spec_filename)
        return spec, audio_norm

    def get_text(self, text):
        if self.cleaned_text:
            text_norm = cleaned_text_to_sequence(text)
        else:
            text_norm = text_to_sequence(text, self.text_cleaners)
        if self.add_blank:
            text_norm = commons.intersperse(text_norm, 0)
        text_norm = torch.LongTensor(text_norm)
        return text_norm

    def get_sid(self, sid):
        sid = torch.LongTensor([int(sid)])
        return sid

    def __getitem__(self, index):
        return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index])

    def __len__(self):
        return len(self.audiopaths_sid_text)


class TextAudioSpeakerCollate():
    """ Zero-pads model inputs and targets
    """
    def __init__(self, return_ids=False):
        self.return_ids = return_ids

    def __call__(self, batch):
        """Collate's training batch from normalized text, audio and speaker identities
        PARAMS
        ------
        batch: [text_normalized, spec_normalized, wav_normalized, sid]
        """
        # Right zero-pad all one-hot text sequences to max input length
        _, ids_sorted_decreasing = torch.sort(
            torch.LongTensor([x[1].size(1) for x in batch]),
            dim=0, descending=True)

        max_text_len = max([len(x[0]) for x in batch])
        max_spec_len = max([x[1].size(1) for x in batch])
        max_wav_len = max([x[2].size(1) for x in batch])

        text_lengths = torch.LongTensor(len(batch))
        spec_lengths = torch.LongTensor(len(batch))
        wav_lengths = torch.LongTensor(len(batch))
        sid = torch.LongTensor(len(batch))

        text_padded = torch.LongTensor(len(batch), max_text_len)
        spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
        wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
        emo = torch.FloatTensor(len(batch), 1024)

        text_padded.zero_()
        spec_padded.zero_()
        wav_padded.zero_()
        emo.zero_()

        for i in range(len(ids_sorted_decreasing)):
            row = batch[ids_sorted_decreasing[i]]

            text = row[0]
            text_padded[i, :text.size(0)] = text
            text_lengths[i] = text.size(0)

            spec = row[1]
            spec_padded[i, :, :spec.size(1)] = spec
            spec_lengths[i] = spec.size(1)

            wav = row[2]
            wav_padded[i, :, :wav.size(1)] = wav
            wav_lengths[i] = wav.size(1)

            sid[i] = row[3]

            emo[i, :] = row[4]

        if self.return_ids:
            return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid, ids_sorted_decreasing
        return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid,emo


class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
    """
    Maintain similar input lengths in a batch.
    Length groups are specified by boundaries.
    Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
  
    It removes samples which are not included in the boundaries.
    Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
    """
    def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True):
        super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
        self.lengths = dataset.lengths
        self.batch_size = batch_size
        self.boundaries = boundaries
  
        self.buckets, self.num_samples_per_bucket = self._create_buckets()
        self.total_size = sum(self.num_samples_per_bucket)
        self.num_samples = self.total_size // self.num_replicas
  
    def _create_buckets(self):
        buckets = [[] for _ in range(len(self.boundaries) - 1)]
        for i in range(len(self.lengths)):
            length = self.lengths[i]
            idx_bucket = self._bisect(length)
            if idx_bucket != -1:
                buckets[idx_bucket].append(i)
  
        for i in range(len(buckets) - 1, 0, -1):
            if len(buckets[i]) == 0:
                buckets.pop(i)
                self.boundaries.pop(i+1)
  
        num_samples_per_bucket = []
        for i in range(len(buckets)):
            len_bucket = len(buckets[i])
            total_batch_size = self.num_replicas * self.batch_size
            rem = (total_batch_size - (len_bucket % total_batch_size)) % total_batch_size
            num_samples_per_bucket.append(len_bucket + rem)
        return buckets, num_samples_per_bucket
  
    def __iter__(self):
      # deterministically shuffle based on epoch
      g = torch.Generator()
      g.manual_seed(self.epoch)
  
      indices = []
      if self.shuffle:
          for bucket in self.buckets:
              indices.append(torch.randperm(len(bucket), generator=g).tolist())
      else:
          for bucket in self.buckets:
              indices.append(list(range(len(bucket))))
  
      batches = []
      for i in range(len(self.buckets)):
          bucket = self.buckets[i]
          len_bucket = len(bucket)
          ids_bucket = indices[i]
          num_samples_bucket = self.num_samples_per_bucket[i]
  
          # add extra samples to make it evenly divisible
          rem = num_samples_bucket - len_bucket
          ids_bucket = ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[:(rem % len_bucket)]
  
          # subsample
          ids_bucket = ids_bucket[self.rank::self.num_replicas]
  
          # batching
          for j in range(len(ids_bucket) // self.batch_size):
              batch = [bucket[idx] for idx in ids_bucket[j*self.batch_size:(j+1)*self.batch_size]]
              batches.append(batch)
  
      if self.shuffle:
          batch_ids = torch.randperm(len(batches), generator=g).tolist()
          batches = [batches[i] for i in batch_ids]
      self.batches = batches
  
      assert len(self.batches) * self.batch_size == self.num_samples
      return iter(self.batches)
  
    def _bisect(self, x, lo=0, hi=None):
      if hi is None:
          hi = len(self.boundaries) - 1
  
      if hi > lo:
          mid = (hi + lo) // 2
          if self.boundaries[mid] < x and x <= self.boundaries[mid+1]:
              return mid
          elif x <= self.boundaries[mid]:
              return self._bisect(x, lo, mid)
          else:
              return self._bisect(x, mid + 1, hi)
      else:
          return -1

    def __len__(self):
        return self.num_samples // self.batch_size