Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,433 Bytes
a72119e 496112d 8365126 a72119e 6d754a8 de54836 d3daa33 496112d 6d754a8 d6302a9 d3daa33 d6302a9 6d754a8 496112d 6d754a8 293e082 26a50b2 6d754a8 496112d d3daa33 293e082 b1d6fce 6d754a8 293e082 6d754a8 4902bd9 6d754a8 8365126 d3daa33 b1d6fce 293e082 6bfcd1c 6d754a8 de54836 d3daa33 a72119e 6d754a8 a72119e 6d754a8 e63457c d3daa33 e63457c 6d754a8 2189235 6d754a8 293e082 2189235 4902bd9 b1d6fce d3daa33 6d754a8 4902bd9 d3daa33 26a50b2 2189235 d3daa33 2189235 d3daa33 a72119e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
import gradio as gr
from loadimg import load_img
import spaces
from transformers import AutoModelForImageSegmentation
import torch
from torchvision import transforms
import moviepy.editor as mp
from pydub import AudioSegment
from PIL import Image
import numpy as np
import os
import tempfile
import uuid
torch.set_float32_matmul_precision(["high", "highest"][0])
birefnet = AutoModelForImageSegmentation.from_pretrained(
"ZhengPeng7/BiRefNet", trust_remote_code=True
)
birefnet.to("cuda")
transform_image = transforms.Compose(
[
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
@spaces.GPU
def fn(vid, fps=0, bg_type="Color", color="#00FF00", bg_image=None):
# Load the video using moviepy
video = mp.VideoFileClip(vid)
# Load original fps if fps value is equal to 0
if fps == 0:
fps = video.fps
# Extract audio from the video
audio = video.audio
# Extract frames at the specified FPS
frames = video.iter_frames(fps=fps)
# Process each frame for background removal
processed_frames = []
yield gr.update(visible=True), gr.update(visible=False)
for frame in frames:
pil_image = Image.fromarray(frame)
if bg_type == "Color":
processed_image = process(pil_image, color)
else:
processed_image = process(pil_image, bg_image)
processed_frames.append(np.array(processed_image))
yield processed_image, None
# Create a new video from the processed frames
processed_video = mp.ImageSequenceClip(processed_frames, fps=fps)
# Add the original audio back to the processed video
processed_video = processed_video.set_audio(audio)
# Save the processed video to a temporary file
temp_dir = "temp"
os.makedirs(temp_dir, exist_ok=True)
unique_filename = str(uuid.uuid4()) + ".mp4"
temp_filepath = os.path.join(temp_dir, unique_filename)
processed_video.write_videofile(temp_filepath, codec="libx264")
yield gr.update(visible=False), gr.update(visible=True)
# Return the path to the temporary file
yield processed_image, temp_filepath
def process(image, bg):
image_size = image.size
input_images = transform_image(image).unsqueeze(0).to("cuda")
# Prediction
with torch.no_grad():
preds = birefnet(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image_size)
if bg.startswith("#"):
color_rgb = tuple(int(bg[i : i + 2], 16) for i in (1, 3, 5))
background = Image.new("RGBA", image_size, color_rgb + (255,))
else:
background = Image.open(bg).convert("RGBA").resize(image_size)
# Composite the image onto the background using the mask
image = Image.composite(image, background, mask)
return image
with gr.Blocks() as demo:
with gr.Row():
in_video = gr.Video(label="Input Video")
stream_image = gr.Image(label="Streaming Output", visible=False)
out_video = gr.Video(label="Final Output Video")
submit_button = gr.Button("Change Background")
with gr.Row():
fps_slider = gr.Slider(
minimum=0,
maximum=60,
step=1,
value=0,
label="Output FPS (0 will inherit the original fps value)",
)
bg_type = gr.Radio(["Color", "Image"], label="Background Type", value="Color")
color_picker = gr.ColorPicker(label="Background Color", value="#00FF00", visible=True)
bg_image = gr.Image(label="Background Image", type="filepath", visible=False)
def update_visibility(bg_type):
if bg_type == "Color":
return gr.update(visible=True), gr.update(visible=False)
else:
return gr.update(visible=False), gr.update(visible=True)
bg_type.change(update_visibility, inputs=bg_type, outputs=[color_picker, bg_image])
examples = gr.Examples(
["rickroll-2sec.mp4"],
inputs=in_video,
outputs=[stream_image, out_video],
fn=fn,
cache_examples=True,
cache_mode="eager",
)
submit_button.click(
fn,
inputs=[in_video, fps_slider, bg_type, color_picker, bg_image],
outputs=[stream_image, out_video],
)
if __name__ == "__main__":
demo.launch(show_error=True) |