File size: 6,887 Bytes
39cd651
009d48a
744538e
39cd651
744538e
f85da29
000fcec
f85da29
 
009d48a
f85da29
 
009d48a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee163cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3f614f
65681d8
ee163cc
 
 
 
 
7a87942
ee163cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import os

import subprocess
import sys


os.system("bash install.sh")


# # os.system("python -m mindsearch.app --lang en --model_format internlm_server")
os.system("python -m mindsearch.app --lang en --model_format internlm_server &")




# from flask import Flask, send_from_directory


# app = Flask(__name__, static_folder='dist')

# @app.route('/')
# def serve_index():
#     return send_from_directory(app.static_folder, 'index.html')

# @app.route('/<path:path>')
# def serve_file(path):
#     return send_from_directory(app.static_folder, path)

# if __name__ == '__main__':

#     subprocess.Popen(["python", "-m", "mindsearch.app", "--lang", "en", "--model_format", "internlm_server"], stdout=subprocess.PIPE, stderr=subprocess.PIPE)

#     app.run(debug=False, port=7860, host="0.0.0.0")


# import json

# import gradio as gr
# import requests
# from lagent.schema import AgentStatusCode

# PLANNER_HISTORY = []
# SEARCHER_HISTORY = []


# def rst_mem(history_planner: list, history_searcher: list):
#     '''
#     Reset the chatbot memory.
#     '''
#     history_planner = []
#     history_searcher = []
#     if PLANNER_HISTORY:
#         PLANNER_HISTORY.clear()
#     return history_planner, history_searcher


# def format_response(gr_history, agent_return):
#     if agent_return['state'] in [
#             AgentStatusCode.STREAM_ING, AgentStatusCode.ANSWER_ING
#     ]:
#         gr_history[-1][1] = agent_return['response']
#     elif agent_return['state'] == AgentStatusCode.PLUGIN_START:
#         thought = gr_history[-1][1].split('```')[0]
#         if agent_return['response'].startswith('```'):
#             gr_history[-1][1] = thought + '\n' + agent_return['response']
#     elif agent_return['state'] == AgentStatusCode.PLUGIN_END:
#         thought = gr_history[-1][1].split('```')[0]
#         if isinstance(agent_return['response'], dict):
#             gr_history[-1][
#                 1] = thought + '\n' + f'```json\n{json.dumps(agent_return["response"], ensure_ascii=False, indent=4)}\n```'  # noqa: E501
#     elif agent_return['state'] == AgentStatusCode.PLUGIN_RETURN:
#         assert agent_return['inner_steps'][-1]['role'] == 'environment'
#         item = agent_return['inner_steps'][-1]
#         gr_history.append([
#             None,
#             f"```json\n{json.dumps(item['content'], ensure_ascii=False, indent=4)}\n```"
#         ])
#         gr_history.append([None, ''])
#     return


# def predict(history_planner, history_searcher):

#     def streaming(raw_response):
#         for chunk in raw_response.iter_lines(chunk_size=8192,
#                                              decode_unicode=False,
#                                              delimiter=b'\n'):
#             if chunk:
#                 decoded = chunk.decode('utf-8')
#                 if decoded == '\r':
#                     continue
#                 if decoded[:6] == 'data: ':
#                     decoded = decoded[6:]
#                 elif decoded.startswith(': ping - '):
#                     continue
#                 response = json.loads(decoded)
#                 yield (response['response'], response['current_node'])

#     global PLANNER_HISTORY
#     PLANNER_HISTORY.append(dict(role='user', content=history_planner[-1][0]))
#     new_search_turn = True

#     url = 'http://localhost:8002/solve'
#     headers = {'Content-Type': 'application/json'}
#     data = {'inputs': PLANNER_HISTORY}
#     raw_response = requests.post(url,
#                                  headers=headers,
#                                  data=json.dumps(data),
#                                  timeout=20,
#                                  stream=True)

#     for resp in streaming(raw_response):
#         agent_return, node_name = resp
#         if node_name:
#             if node_name in ['root', 'response']:
#                 continue
#             agent_return = agent_return['nodes'][node_name]['detail']
#             if new_search_turn:
#                 history_searcher.append([agent_return['content'], ''])
#                 new_search_turn = False
#             format_response(history_searcher, agent_return)
#             if agent_return['state'] == AgentStatusCode.END:
#                 new_search_turn = True
#             yield history_planner, history_searcher
#         else:
#             new_search_turn = True
#             format_response(history_planner, agent_return)
#             if agent_return['state'] == AgentStatusCode.END:
#                 PLANNER_HISTORY = agent_return['inner_steps']
#             yield history_planner, history_searcher
#     return history_planner, history_searcher


# with gr.Blocks() as demo:
#     gr.HTML("""<h1 align="center">WebAgent Gradio Simple Demo</h1>""")
#     with gr.Row():
#         with gr.Column(scale=10):
#             with gr.Row():
#                 with gr.Column():
#                     planner = gr.Chatbot(label='planner',
#                                          height=700,
#                                          show_label=True,
#                                          show_copy_button=True,
#                                          bubble_full_width=False,
#                                          render_markdown=True)
#                 with gr.Column():
#                     searcher = gr.Chatbot(label='searcher',
#                                           height=700,
#                                           show_label=True,
#                                           show_copy_button=True,
#                                           bubble_full_width=False,
#                                           render_markdown=True)
#             with gr.Row():
#                 user_input = gr.Textbox(show_label=False,
#                                         placeholder='inputs...',
#                                         lines=5,
#                                         container=False)
#             with gr.Row():
#                 with gr.Column(scale=2):
#                     submitBtn = gr.Button('Submit')
#                 with gr.Column(scale=1, min_width=20):
#                     emptyBtn = gr.Button('Clear History')

#     def user(query, history):
#         return '', history + [[query, '']]

#     submitBtn.click(user, [user_input, planner], [user_input, planner],
#                     queue=False).then(predict, [planner, searcher],
#                                       [planner, searcher])
#     emptyBtn.click(rst_mem, [planner, searcher], [planner, searcher],
#                    queue=False)

# # subprocess.Popen(["python", "-m", "mindsearch.app", "--lang", "en", "--model_format", "internlm_server"], shell=True, stdout=sys.stdout, stderr=sys.stderr)


# demo.queue()
# demo.launch(server_name='0.0.0.0',
#             server_port=7860,
#             inbrowser=True,
#             share=True)

# pass