File size: 3,004 Bytes
721f65d
c3e3b63
 
 
60cd313
c3e3b63
60cd313
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
721f65d
 
 
 
 
 
 
 
 
60cd313
 
721f65d
60cd313
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import json
import os
from io import BytesIO

import gradio as gr
from huggingface_hub import upload_file

default_question = """
We're going to use the <a href="https://huggingface.co/datasets/wikitext"><code>wikitext (link)</a></code> dataset with the <code><a href="https://huggingface.co/bert-base-cased?">bert-base-cased (link)</a></code> model checkpoint.

<br/><br/>

Start by loading the <code>wikitext-2-raw-v1</code> version of that dataset, and take the 11th example (index 10) of the <code>train</code> split.<br/>
We'll tokenize this using the appropriate tokenizer, and we'll mask the sixth token (index 5) the sequence.

<br/><br/>

When using the <code>bert-base-cased</code> checkpoint to unmask that token, what is the most probable prediction?
"""

internships = {
    'Accelerate': default_question,
    'Diffusion distillation': default_question,
    'Skops & Scikit-Learn': default_question,
    "Code Generation": default_question,
    "Document AI Democratization": default_question,
    "Evaluate": default_question,
    "ASR": default_question,
    "Efficient video pretraining": default_question,
    "Embodied AI": default_question,
    "Emergence of scene and text understanding": default_question,
    "Everything is multimodal": default_question,
    "Everything is vision": default_question,
    "Retrieval augmentation as prompting": default_question,
    "Social impact evaluations": default_question,
    "Toolkit for detecting distribution shift": default_question,
    "AI Art Tooling Residency": default_question,
    "Gradio as an ecosystem": default_question,
}


with gr.Blocks() as demo:
    gr.Markdown(
        """
    # Internship introduction
    Please select the internship you would like to apply to and answer the question asked in the Answer box.
    """
    )

    internship_choice = gr.Dropdown(label='Internship', choices=list(internships.keys()))

    with gr.Column(visible=False) as details_col:
        summary = gr.HTML(label='Question')
        details = gr.Textbox(label="Answer")
        username = gr.Textbox(label="Hugging Face Username")
        generate_btn = gr.Button("Submit")
        output = gr.Label()

    def filter_species(species):
        return gr.Label.update(
            internships[species]
        ), gr.update(visible=True)

    internship_choice.change(filter_species, internship_choice, [summary, details_col])

    def on_click(_details, _username, _internship_choice):
        response = {'response': _details, "internship": _internship_choice}
        upload_file(
            path_or_fileobj=BytesIO(bytes(json.dumps(response), 'utf-8')),
            path_in_repo=_username,
            repo_id='lysandre/internships',
            repo_type='dataset',
            token=os.environ['HF_TOKEN']
        )
        return f"Submitted: '{_details}' for user '{_username}'"

    generate_btn.click(on_click, inputs=[details, username, internship_choice], outputs=[output])


if __name__ == "__main__":
    demo.launch()