File size: 6,566 Bytes
77f334e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbeec50
 
 
4c622ed
cd3acfe
 
4c622ed
8c3ddb5
fbeec50
 
cd3acfe
c41dac2
 
 
 
 
 
 
 
 
 
 
5569679
c41dac2
 
 
 
07b98ad
c41dac2
 
fbeec50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c41dac2
 
07b98ad
 
 
c41dac2
 
 
 
 
 
 
 
 
 
 
fbeec50
 
 
 
 
c41dac2
 
77f334e
c41dac2
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

import os
import gradio as gr
from transformers import pipeline
from pytube import YouTube
from datasets import Dataset, Audio
from moviepy.editor import AudioFileClip

pipe = pipeline(model="irena/whisper-small-sv-SE")

def download_from_youtube(url):
    """
    Downloads the video from the given YouTube URL and returns the path to the audio file.
    """
    streams = YouTube(url).streams.filter(only_audio=True, file_extension='mp4')
    fpath = streams.first().download()
    return fpath

def get_timestamp(seconds):
    """
    Creates %M:%S timestamp from seconds.
    """
    minutes = int(seconds / 60)
    seconds = int(seconds % 60)
    return f"{str(minutes).zfill(2)}:{str(seconds).zfill(2)}"

def divide_into_30s_segments(audio_fpath, seconds_max):
    """
    Divides the audio file into 30s segments and returns the paths to the segments and the start times of the segments.
    :param audio_fpath: Path to the audio file.
    :param seconds_max: Maximum number of seconds to consider. If the audio file is longer than this, it will be truncated.
    """
    if not os.path.exists("segmented_audios"):
        os.makedirs("segmented_audios")

    sound = AudioFileClip(audio_fpath)
    n_full_segments = int(sound.duration / 30)
    len_last_segment = sound.duration % 30

    max_segments = int(seconds_max / 30)
    if n_full_segments > max_segments:
        n_full_segments = max_segments
        len_last_segment = 0

    segment_paths = []
    segment_start_times = []

    segments_available = n_full_segments + 1
    for i in range(min(segments_available, max_segments)):
        start = i * 30

        # Skip last segment if it is smaller than two seconds
        is_last_segment = i == n_full_segments
        if is_last_segment and not len_last_segment > 2:
            continue
        elif is_last_segment:
            end = start + len_last_segment
        else:
            end = (i + 1) * 30

        segment_path = os.path.join("segmented_audios", f"segment_{i}.wav")
        segment = sound.subclip(start, end)
        segment.write_audiofile(segment_path)
        segment_paths.append(segment_path)
        segment_start_times.append(start)

    return segment_paths, segment_start_times
def get_translation(text):
    """
    Translates the given Chinese text to English.
    """
    return "TODO: Make API call to Google Translate to get English translation"

def transcribe(audio, url, seconds_max):
    """
    Transcribes a YouTube video if a url is specified and returns the transcription.
    If not url is specified, it transcribes the audio file as passed by Gradio.
    :param audio: Audio file as passed by Gradio. Only used if no url is specified.
    :param url: YouTube URL to transcribe.
    :param seconds_max: Maximum number of seconds to consider. If the audio file is longer than this, it will be truncated.
    """
    if url:
        fpath = download_from_youtube(url)
        segment_paths, segment_start_times = divide_into_30s_segments(fpath, seconds_max)

        audio_dataset = Dataset.from_dict({"audio": segment_paths}).cast_column("audio", Audio(sampling_rate=16000))
        pred = pipe(audio_dataset["audio"])
        text = ""
        n_segments = len(segment_start_times)
        for i, (seconds, output) in enumerate(zip(segment_start_times, pred)):
            text += f"[Segment {i+1}/{n_segments}, start time {get_timestamp(seconds)}]\n"
            text += f"{output['text']}\n"
            text += f"[Translation]\n{get_translation(output['text'])}\n\n"
        return text

    else:
        text = pipe(audio)["text"]
    return text
    
block = gr.Interface(
    fn=transcribe, 
    inputs=[
        gr.Audio(source="microphone", type="filepath", label="Transcribe from Microphone"),
        gr.Text(max_lines=1, placeholder="Enter YouTube Link which has a Chinese video", label="Transcribe from YouTube URL"),
        gr.Slider(minimum=30, maximum=300, value=30, step=30, label="Number of seconds to transcribe from YouTube URL")
    ], 
    outputs="text",
    title="Whisper Small Chinese",
    description="Realtime Chinese speech recognition",
)

block.launch()























'''
import os
import gradio as gr
from transformers import pipeline
import gradio as gr
import torch 
import spacy

os.system('pip install https://huggingface.co/Armandoliv/es_pipeline/resolve/main/es_pipeline-any-py3-none-any.whl')

pipe = pipeline(model="irena/whisper-small-sv-SE") 
nlp_ner = spacy.load("es_pipeline")
def main_generator(youtube_id:str):
  YouTubeID = youtube_id.split("https://www.youtube.com/watch?v=") #
  if len(YouTubeID)>1:
      YouTubeID = YouTubeID[1]
  else:
      YouTubeID ='xOZM-1p-jAk'
      
  OutputFile = f'test_audio_youtube_{YouTubeID}.m4a'

  os.system(f"youtube-dl -o {OutputFile} {YouTubeID} --extract-audio --restrict-filenames -f 'bestaudio[ext=m4a]'")
  
  result = pipe(OutputFile)
  text = result['text']

  output_list = []

  output_list.append(text)

  return text 



def transcribe(audio):
    text = pipe(audio)["text"]
    return text

demo = gr.Blocks()


iface = gr.Interface(
    fn=transcribe, 
    inputs=gr.Audio(source="microphone", type="filepath"), 
    outputs="text",
    title="Whisper Small Swedish-Microphone",
    description="Realtime demo for Swedish speech recognition using a fine-tuned Whisper small model. An audio for recognize.",
)

inputs = [gr.Textbox(lines=1, placeholder="Link of youtube video here...", label="Input")]
outputs = gr.HighlightedText()
title="Transcription of Swedish videos"
description = "This demo uses small Whisper to  transcribe what is spoken in a swedish video"
examples = ['https://www.youtube.com/watch?v=6eWhV7xYH-Q']
io = gr.Interface(fn=main_generator, inputs=inputs, outputs=outputs, title=title, description = description, examples = examples,

                  css= """.gr-button-primary { background: -webkit-linear-gradient( 
                    90deg, #355764 0%, #55a8a1 100% ) !important;     background: #355764;
                        background: linear-gradient( 
                    90deg, #355764 0%, #55a8a1 100% ) !important;
                        background: -moz-linear-gradient( 90deg, #355764 0%, #55a8a1 100% ) !important;
                        background: -webkit-linear-gradient( 
                    90deg, #355764 0%, #55a8a1 100% ) !important;
                    color:white !important}"""
                  )


with demo:
    gr.TabbedInterface([iface, yt], ["Transcribe Audio", "Transcribe YouTube"])

demo.launch(enable_queue=True)

'''