Spaces:
Runtime error
Runtime error
File size: 2,328 Bytes
fbeec50 8c3ddb5 fbeec50 c41dac2 5569679 c41dac2 07b98ad c41dac2 fbeec50 c41dac2 07b98ad c41dac2 fbeec50 c41dac2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
import os
import gradio as gr
from transformers import pipeline
from pytube import YouTube
os.system('pip install https://huggingface.co/Armandoliv/es_pipeline/resolve/main/es_pipeline-any-py3-none-any.whl')
pipe = pipeline(model="irena/whisper-small-sv-SE")
def main_generator(youtube_id:str):
YouTubeID = youtube_id.split("https://www.youtube.com/watch?v=") #
if len(YouTubeID)>1:
YouTubeID = YouTubeID[1]
else:
YouTubeID ='xOZM-1p-jAk'
OutputFile = f'test_audio_youtube_{YouTubeID}.m4a'
os.system(f"youtube-dl -o {OutputFile} {YouTubeID} --extract-audio --restrict-filenames -f 'bestaudio[ext=m4a]'")
result = pipe(OutputFile)
text = result['text']
output_list = []
output_list.append(text)
return text
def transcribe(audio):
text = pipe(audio)["text"]
return text
demo = gr.Blocks()
iface = gr.Interface(
fn=transcribe,
inputs=gr.Audio(source="microphone", type="filepath"),
outputs="text",
title="Whisper Small Swedish-Microphone",
description="Realtime demo for Swedish speech recognition using a fine-tuned Whisper small model. An audio for recognize.",
)
inputs = [gr.Textbox(lines=1, placeholder="Link of youtube video here...", label="Input")]
outputs = gr.HighlightedText()
title="Transcription of Swedish videos"
description = "This demo uses small Whisper to transcribe what is spoken in a swedish video"
examples = ['https://www.youtube.com/watch?v=6eWhV7xYH-Q']
io = gr.Interface(fn=main_generator, inputs=inputs, outputs=outputs, title=title, description = description, examples = examples,
css= """.gr-button-primary { background: -webkit-linear-gradient(
90deg, #355764 0%, #55a8a1 100% ) !important; background: #355764;
background: linear-gradient(
90deg, #355764 0%, #55a8a1 100% ) !important;
background: -moz-linear-gradient( 90deg, #355764 0%, #55a8a1 100% ) !important;
background: -webkit-linear-gradient(
90deg, #355764 0%, #55a8a1 100% ) !important;
color:white !important}"""
)
with demo:
gr.TabbedInterface([iface, yt], ["Transcribe Audio", "Transcribe YouTube"])
demo.launch(enable_queue=True)
|