ASR_ID2223 / app.py
irena's picture
Update app.py
c41dac2
raw
history blame
2.23 kB
import os
import gradio as gr
from transformers import pipeline
from pytube import YouTube
pipe = pipeline(model="irena/whisper-small-sv-SE")
def main_generator(youtube_id:str):
YouTubeID = youtube_id.split("https://www.youtube.com/watch?v=") #
if len(YouTubeID)>1:
YouTubeID = YouTubeID[1]
else:
YouTubeID ='xOZM-1p-jAk'
OutputFile = f'test_audio_youtube_{YouTubeID}.m4a'
os.system(f"youtube-dl -o {OutputFile} {YouTubeID} --extract-audio --restrict-filenames -f 'bestaudio[ext=m4a]'")
result = model_whisper.transcribe(OutputFile)
text = result['text']
output_list = []
output_list.append(text)
return text
def transcribe(audio):
text = pipe(audio)["text"]
return text
demo = gr.Blocks()
iface = gr.Interface(
fn=transcribe,
inputs=gr.Audio(source="microphone", type="filepath"),
outputs="text",
title="Whisper Small Swedish-Microphone",
description="Realtime demo for Swedish speech recognition using a fine-tuned Whisper small model. An audio for recognize.",
)
inputs = [gr.Textbox(lines=1, placeholder="Link of youtube video here...", label="Input")]
outputs = gr.HighlightedText()
title="ASR FOR SPANISH MEDICAL RECORDS"
description = "This demo uses AI Models to create an AUDIO ANNOTATION FOR MEDICAL RECORDS"
examples = ['https://www.youtube.com/watch?v=xOZM-1p-jAk']
io = gr.Interface(fn=main_generator, inputs=inputs, outputs=outputs, title=title, description = description, examples = examples,
css= """.gr-button-primary { background: -webkit-linear-gradient(
90deg, #355764 0%, #55a8a1 100% ) !important; background: #355764;
background: linear-gradient(
90deg, #355764 0%, #55a8a1 100% ) !important;
background: -moz-linear-gradient( 90deg, #355764 0%, #55a8a1 100% ) !important;
background: -webkit-linear-gradient(
90deg, #355764 0%, #55a8a1 100% ) !important;
color:white !important}"""
)
with demo:
gr.TabbedInterface([iface, yt], ["Transcribe Audio", "Transcribe YouTube"])
demo.launch(enable_queue=True)