ASR_ID2223 / app.py
irena's picture
Create app.py
fbeec50
raw
history blame
1.15 kB
import os
import gradio as gr
from transformers import pipeline
from pytube import YouTube
pipe = pipeline(model="irena/whisper-small-sv-SE")
def yt(link):
yt = YouTube(link)
stream = yt.streams.filter(only_audio=True)[0]
stream.download(filename="audio.mp3")
text = pipe("audio.mp3")["text"]
return text
def transcribe(audio):
text = pipe(audio)["text"]
return text
demo = gr.Blocks()
iface = gr.Interface(
fn=transcribe,
inputs=gr.Audio(source="microphone", type="filepath"),
outputs="text",
title="Whisper Small Swedish-Microphone",
description="Realtime demo for Swedish speech recognition using a fine-tuned Whisper small model. An audio for recognize.",
)
yt = gr.Interface(
fn=yt,
inputs=[gr.inputs.Textbox(lines=1, label="Youtube URL")],
outputs=["html", "text"],
title="Whisper Small Swedish-Youtube",
description="Realtime demo for Swedish speech recognition using a fine-tuned Whisper small model. A Youtube URL for recognize."
)
with demo:
gr.TabbedInterface([iface, yt], ["Transcribe Audio", "Transcribe YouTube"])
demo.launch(enable_queue=True)