Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,212 +1,48 @@
|
|
1 |
-
|
2 |
-
import os
|
3 |
import gradio as gr
|
4 |
from transformers import pipeline
|
5 |
from pytube import YouTube
|
6 |
-
from datasets import Dataset, Audio
|
7 |
-
from moviepy.editor import AudioFileClip
|
8 |
|
9 |
pipe = pipeline(model="irena/whisper-small-sv-SE")
|
10 |
|
11 |
-
def
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
fpath = streams.first().download()
|
17 |
-
return fpath
|
18 |
-
|
19 |
-
def get_timestamp(seconds):
|
20 |
-
"""
|
21 |
-
Creates %M:%S timestamp from seconds.
|
22 |
-
"""
|
23 |
-
minutes = int(seconds / 60)
|
24 |
-
seconds = int(seconds % 60)
|
25 |
-
return f"{str(minutes).zfill(2)}:{str(seconds).zfill(2)}"
|
26 |
-
|
27 |
-
def divide_into_30s_segments(audio_fpath, seconds_max):
|
28 |
-
"""
|
29 |
-
Divides the audio file into 30s segments and returns the paths to the segments and the start times of the segments.
|
30 |
-
:param audio_fpath: Path to the audio file.
|
31 |
-
:param seconds_max: Maximum number of seconds to consider. If the audio file is longer than this, it will be truncated.
|
32 |
-
"""
|
33 |
-
if not os.path.exists("segmented_audios"):
|
34 |
-
os.makedirs("segmented_audios")
|
35 |
-
|
36 |
-
sound = AudioFileClip(audio_fpath)
|
37 |
-
n_full_segments = int(sound.duration / 30)
|
38 |
-
len_last_segment = sound.duration % 30
|
39 |
-
|
40 |
-
max_segments = int(seconds_max / 30)
|
41 |
-
if n_full_segments > max_segments:
|
42 |
-
n_full_segments = max_segments
|
43 |
-
len_last_segment = 0
|
44 |
-
|
45 |
-
segment_paths = []
|
46 |
-
segment_start_times = []
|
47 |
-
|
48 |
-
segments_available = n_full_segments + 1
|
49 |
-
for i in range(min(segments_available, max_segments)):
|
50 |
-
start = i * 30
|
51 |
-
|
52 |
-
# Skip last segment if it is smaller than two seconds
|
53 |
-
is_last_segment = i == n_full_segments
|
54 |
-
if is_last_segment and not len_last_segment > 2:
|
55 |
-
continue
|
56 |
-
elif is_last_segment:
|
57 |
-
end = start + len_last_segment
|
58 |
-
else:
|
59 |
-
end = (i + 1) * 30
|
60 |
-
|
61 |
-
segment_path = os.path.join("segmented_audios", f"segment_{i}.wav")
|
62 |
-
segment = sound.subclip(start, end)
|
63 |
-
segment.write_audiofile(segment_path)
|
64 |
-
segment_paths.append(segment_path)
|
65 |
-
segment_start_times.append(start)
|
66 |
-
|
67 |
-
return segment_paths, segment_start_times
|
68 |
-
def get_translation(text):
|
69 |
-
"""
|
70 |
-
Translates the given Chinese text to English.
|
71 |
-
"""
|
72 |
-
return "TODO: Make API call to Google Translate to get English translation"
|
73 |
-
|
74 |
-
def transcribe(audio, url, seconds_max):
|
75 |
-
"""
|
76 |
-
Transcribes a YouTube video if a url is specified and returns the transcription.
|
77 |
-
If not url is specified, it transcribes the audio file as passed by Gradio.
|
78 |
-
:param audio: Audio file as passed by Gradio. Only used if no url is specified.
|
79 |
-
:param url: YouTube URL to transcribe.
|
80 |
-
:param seconds_max: Maximum number of seconds to consider. If the audio file is longer than this, it will be truncated.
|
81 |
-
"""
|
82 |
-
if url:
|
83 |
-
fpath = download_from_youtube(url)
|
84 |
-
segment_paths, segment_start_times = divide_into_30s_segments(fpath, seconds_max)
|
85 |
-
|
86 |
-
audio_dataset = Dataset.from_dict({"audio": segment_paths}).cast_column("audio", Audio(sampling_rate=16000))
|
87 |
-
pred = pipe(audio_dataset["audio"])
|
88 |
-
text = ""
|
89 |
-
n_segments = len(segment_start_times)
|
90 |
-
for i, (seconds, output) in enumerate(zip(segment_start_times, pred)):
|
91 |
-
text += f"[Segment {i+1}/{n_segments}, start time {get_timestamp(seconds)}]\n"
|
92 |
-
text += f"{output['text']}\n"
|
93 |
-
text += f"[Translation]\n{get_translation(output['text'])}\n\n"
|
94 |
-
return text
|
95 |
-
|
96 |
-
else:
|
97 |
-
text = pipe(audio)["text"]
|
98 |
-
return text
|
99 |
-
|
100 |
-
block = gr.Interface(
|
101 |
-
fn=transcribe,
|
102 |
-
inputs=[
|
103 |
-
gr.Audio(source="microphone", type="filepath", label="Transcribe from Microphone"),
|
104 |
-
gr.Text(max_lines=1, placeholder="Enter YouTube Link which has a Chinese video", label="Transcribe from YouTube URL"),
|
105 |
-
gr.Slider(minimum=30, maximum=300, value=30, step=30, label="Number of seconds to transcribe from YouTube URL")
|
106 |
-
],
|
107 |
-
outputs="text",
|
108 |
-
title="Whisper Small Chinese",
|
109 |
-
description="Realtime Chinese speech recognition",
|
110 |
-
)
|
111 |
-
|
112 |
-
block.launch()
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
|
|
|
|
|
|
|
131 |
|
132 |
|
133 |
|
134 |
-
|
135 |
-
|
136 |
-
'''
|
137 |
-
import os
|
138 |
-
import gradio as gr
|
139 |
-
from transformers import pipeline
|
140 |
-
import gradio as gr
|
141 |
-
import torch
|
142 |
-
import spacy
|
143 |
-
|
144 |
-
os.system('pip install https://huggingface.co/Armandoliv/es_pipeline/resolve/main/es_pipeline-any-py3-none-any.whl')
|
145 |
-
|
146 |
-
pipe = pipeline(model="irena/whisper-small-sv-SE")
|
147 |
-
nlp_ner = spacy.load("es_pipeline")
|
148 |
-
def main_generator(youtube_id:str):
|
149 |
-
YouTubeID = youtube_id.split("https://www.youtube.com/watch?v=") #
|
150 |
-
if len(YouTubeID)>1:
|
151 |
-
YouTubeID = YouTubeID[1]
|
152 |
-
else:
|
153 |
-
YouTubeID ='xOZM-1p-jAk'
|
154 |
-
|
155 |
-
OutputFile = f'test_audio_youtube_{YouTubeID}.m4a'
|
156 |
-
|
157 |
-
os.system(f"youtube-dl -o {OutputFile} {YouTubeID} --extract-audio --restrict-filenames -f 'bestaudio[ext=m4a]'")
|
158 |
-
|
159 |
-
result = pipe(OutputFile)
|
160 |
-
text = result['text']
|
161 |
-
|
162 |
-
output_list = []
|
163 |
-
|
164 |
-
output_list.append(text)
|
165 |
-
|
166 |
-
return text
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
def transcribe(audio):
|
171 |
-
text = pipe(audio)["text"]
|
172 |
-
return text
|
173 |
-
|
174 |
-
demo = gr.Blocks()
|
175 |
-
|
176 |
-
|
177 |
-
iface = gr.Interface(
|
178 |
-
fn=transcribe,
|
179 |
inputs=gr.Audio(source="microphone", type="filepath"),
|
180 |
outputs="text",
|
181 |
-
title="Whisper Small Swedish
|
182 |
-
description="Realtime demo for Swedish speech recognition using a fine-tuned Whisper small model.
|
183 |
)
|
184 |
|
185 |
-
inputs = [gr.Textbox(lines=1, placeholder="Link of youtube video here...", label="Input")]
|
186 |
-
outputs = gr.HighlightedText()
|
187 |
-
title="Transcription of Swedish videos"
|
188 |
-
description = "This demo uses small Whisper to transcribe what is spoken in a swedish video"
|
189 |
-
examples = ['https://www.youtube.com/watch?v=6eWhV7xYH-Q']
|
190 |
-
io = gr.Interface(fn=main_generator, inputs=inputs, outputs=outputs, title=title, description = description, examples = examples,
|
191 |
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
|
202 |
|
203 |
-
with demo:
|
204 |
-
gr.TabbedInterface([iface, yt], ["Transcribe Audio", "Transcribe YouTube"])
|
205 |
|
206 |
-
demo.
|
207 |
|
208 |
-
|
|
|
209 |
|
|
|
210 |
|
211 |
|
212 |
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
from pytube import YouTube
|
|
|
|
|
4 |
|
5 |
pipe = pipeline(model="irena/whisper-small-sv-SE")
|
6 |
|
7 |
+
def transcribe_video(url):
|
8 |
+
yt=YouTube(url).streams.filter(only_audio=True).all()
|
9 |
+
audio=yt[0].download()
|
10 |
+
text = pipe(audio)["text"]
|
11 |
+
return text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
def transcribe_audio(audio):
|
14 |
+
text = pipe(audio)["text"]
|
15 |
+
return text
|
16 |
|
17 |
|
18 |
|
19 |
+
audio = gr.Interface(
|
20 |
+
fn=transcribe_audio,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
inputs=gr.Audio(source="microphone", type="filepath"),
|
22 |
outputs="text",
|
23 |
+
title="Whisper Small Swedish",
|
24 |
+
description="Realtime demo for Swedish speech recognition using a fine-tuned Whisper small model.",
|
25 |
)
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
|
29 |
+
video = gr.Interface(
|
30 |
+
fn=transcribe_video,
|
31 |
+
inputs=gr.Textbox(label="Enter a YouTube URL:"),
|
32 |
+
outputs="text",
|
33 |
+
title="Whisper Small Swedish",
|
34 |
+
description="Transcribe swedish videos from YouTube",
|
35 |
+
)
|
36 |
+
|
37 |
|
38 |
|
|
|
|
|
39 |
|
40 |
+
demo = gr.TabbedInterface([audio, video], ["transcribe from recording", "transcribe from youtube url"])
|
41 |
|
42 |
+
if __name__ == "__main__":
|
43 |
+
demo.launch()
|
44 |
|
45 |
+
|
46 |
|
47 |
|
48 |
|