Spaces:
Runtime error
Runtime error
import torch | |
import network | |
from lyco_helpers import factorization | |
from einops import rearrange | |
class ModuleTypeOFT(network.ModuleType): | |
def create_module(self, net: network.Network, weights: network.NetworkWeights): | |
if all(x in weights.w for x in ["oft_blocks"]) or all(x in weights.w for x in ["oft_diag"]): | |
return NetworkModuleOFT(net, weights) | |
return None | |
# Supports both kohya-ss' implementation of COFT https://github.com/kohya-ss/sd-scripts/blob/main/networks/oft.py | |
# and KohakuBlueleaf's implementation of OFT/COFT https://github.com/KohakuBlueleaf/LyCORIS/blob/dev/lycoris/modules/diag_oft.py | |
class NetworkModuleOFT(network.NetworkModule): | |
def __init__(self, net: network.Network, weights: network.NetworkWeights): | |
super().__init__(net, weights) | |
self.lin_module = None | |
self.org_module: list[torch.Module] = [self.sd_module] | |
self.scale = 1.0 | |
# kohya-ss | |
if "oft_blocks" in weights.w.keys(): | |
self.is_kohya = True | |
self.oft_blocks = weights.w["oft_blocks"] # (num_blocks, block_size, block_size) | |
self.alpha = weights.w["alpha"] # alpha is constraint | |
self.dim = self.oft_blocks.shape[0] # lora dim | |
# LyCORIS | |
elif "oft_diag" in weights.w.keys(): | |
self.is_kohya = False | |
self.oft_blocks = weights.w["oft_diag"] | |
# self.alpha is unused | |
self.dim = self.oft_blocks.shape[1] # (num_blocks, block_size, block_size) | |
is_linear = type(self.sd_module) in [torch.nn.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear] | |
is_conv = type(self.sd_module) in [torch.nn.Conv2d] | |
is_other_linear = type(self.sd_module) in [torch.nn.MultiheadAttention] # unsupported | |
if is_linear: | |
self.out_dim = self.sd_module.out_features | |
elif is_conv: | |
self.out_dim = self.sd_module.out_channels | |
elif is_other_linear: | |
self.out_dim = self.sd_module.embed_dim | |
if self.is_kohya: | |
self.constraint = self.alpha * self.out_dim | |
self.num_blocks = self.dim | |
self.block_size = self.out_dim // self.dim | |
else: | |
self.constraint = None | |
self.block_size, self.num_blocks = factorization(self.out_dim, self.dim) | |
def calc_updown(self, orig_weight): | |
oft_blocks = self.oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype) | |
eye = torch.eye(self.block_size, device=self.oft_blocks.device) | |
if self.is_kohya: | |
block_Q = oft_blocks - oft_blocks.transpose(1, 2) # ensure skew-symmetric orthogonal matrix | |
norm_Q = torch.norm(block_Q.flatten()) | |
new_norm_Q = torch.clamp(norm_Q, max=self.constraint) | |
block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8)) | |
oft_blocks = torch.matmul(eye + block_Q, (eye - block_Q).float().inverse()) | |
R = oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype) | |
# This errors out for MultiheadAttention, might need to be handled up-stream | |
merged_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size) | |
merged_weight = torch.einsum( | |
'k n m, k n ... -> k m ...', | |
R, | |
merged_weight | |
) | |
merged_weight = rearrange(merged_weight, 'k m ... -> (k m) ...') | |
updown = merged_weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight | |
output_shape = orig_weight.shape | |
return self.finalize_updown(updown, orig_weight, output_shape) | |