import streamlit as st import torch import torch.nn.functional as F from torch import nn import pandas as pd import matplotlib.pyplot as plt # for making figures # %matplotlib inline # %config InlineBackend.figure_format = 'retina' from pprint import pprint device = torch.device("cuda" if torch.cuda.is_available() else "cpu") data = open('shakespeare2.txt', 'r').read() unique_chars = list(set(''.join(data))) unique_chars.sort() to_string = {i:ch for i, ch in enumerate(unique_chars)} to_int = {ch:i for i, ch in enumerate(unique_chars)} class NextChar(nn.Module): def __init__(self, block_size, vocab_size, emb_dim, hidden_dims): super().__init__() self.emb = nn.Embedding(vocab_size, emb_dim) self.lin1 = nn.Linear(block_size * emb_dim, hidden_dims[0]) self.lin2 = nn.Linear(hidden_dims[0], hidden_dims[1]) self.lin3 = nn.Linear(hidden_dims[1], vocab_size) def forward(self, x): x = self.emb(x) x = x.view(x.shape[0], -1) x = torch.sin(self.lin1(x)) x = torch.sin(self.lin2(x)) x = self.lin3(x) return x # For context size 5 and embedding size 5 model_c5_e5 = NextChar(5, len(to_int), 5, [64, 64]) model_c5_e5.load_state_dict(torch.load("context_5_embedding_5.pth")) # For context size 5 and embedding size 10 model_c5_e10 = NextChar(5, len(to_int), 10, [64, 64]) model_c5_e10.load_state_dict(torch.load("context_5_embedding_10.pth")) # For context size 7 and embedding size 5 model_c7_e5 = NextChar(7, len(to_int), 5, [64, 64]) model_c7_e5.load_state_dict(torch.load("context_7_embedding_5.pth")) # For context size 7 and embedding size 10 model_c7_e10 = NextChar(7, len(to_int), 10, [64, 64]) model_c7_e10.load_state_dict(torch.load("context_7_embedding_10.pth")) random_seed = 3 g = torch.Generator() g.manual_seed(random_seed) torch.manual_seed(random_seed) def generate_name(model,sentence, itos, stoi, block_size, max_len=10): original_sentence = sentence if len(sentence) < block_size: sentence = " " * (block_size - len(sentence)) + sentence using_for_predicction = sentence[-block_size:].lower() context = [stoi[word] for word in using_for_predicction] prediction = "" for i in range(max_len): x = torch.tensor(context).view(1, -1).to(device) print(type(model)) y_pred = model(x) ix = torch.distributions.categorical.Categorical(logits=y_pred).sample().item() ch = itos[ix] prediction += ch context = context[1:] + [ix] return original_sentence + prediction # Streamlit app st.title("Next K Text Generation with MLP") st.sidebar.title("Settings") input_string = st.sidebar.text_input("Input String") nextk = st.sidebar.number_input("Next K Tokens", min_value=1, max_value=500, value=150) block_size = st.select_slider("Block Size", options=[5,7], value=5) embedding_size = st.select_slider("Embedding Size", options=[5,10], value=5) if st.sidebar.button("Generate Text"): if block_size == 5: context = input_string if embedding_size == 5: generated_text = generate_name(model_c5_e5,context, to_string, to_int, 5, max_len=nextk) else: generated_text = generate_name(model_c5_e10,context, to_string, to_int, 5, max_len=nextk) elif block_size == 7: context = input_string if embedding_size == 10: generated_text = generate_name(model_c7_e10, context, to_string, to_int, 7 ,max_len=nextk) else: generated_text = generate_name(model_c7_e5, context, to_string, to_int, 7, max_len=nextk) st.write("Generated Text:") st.write(generated_text)