Spaces:
Runtime error
Runtime error
import streamlit as st | |
import numpy as np | |
import torch | |
from transformers import AutoTokenizer, AutoModel, DistilBertForSequenceClassification | |
my_model_name = "istassiy/ysda_2022_ml2_hw3_distilbert_base_uncased" | |
arxiv_code_to_topic = { | |
'cs' : 'computer science', | |
'q-bio' : 'biology', | |
'q-fin' : 'finance', | |
'astro-ph' : 'physics', | |
'cond-mat' : 'physics', | |
'gr-qc' : 'physics', | |
'hep-ex' : 'physics', | |
'hep-lat' : 'physics', | |
'hep-ph' : 'physics', | |
'hep-th' : 'physics', | |
'math-ph' : 'physics', | |
'nlin' : 'physics', | |
'nucl-ex' : 'physics', | |
'nucl-th' : 'physics', | |
'quant-ph' : 'physics', | |
'physics' : 'physics', | |
'eess' : 'electrical engineering', | |
'econ' : 'economics', | |
'math' : 'mathematics', | |
'stat' : 'statistics', | |
} | |
sorted_arxiv_topics = sorted(set(arxiv_code_to_topic.values())) | |
NUM_LABELS = len(sorted_arxiv_topics) | |
def load_tokenizer(): | |
tokenizer = AutoTokenizer.from_pretrained(my_model_name) | |
return tokenizer | |
def load_model(): | |
model = DistilBertForSequenceClassification.from_pretrained(my_model_name) | |
return model | |
def sigmoid(x): | |
return 1/(1 + np.exp(-x)) | |
def get_top_predictions(predictions): | |
probs = (sigmoid(predictions) > 0.5).astype(float) | |
probs = probs / np.sum(probs) | |
res = {} | |
total_prob = 0 | |
for topic, prob in zip(sorted_arxiv_topics, probs): | |
total_prob += prob | |
res[topic] = prob | |
if total_prob > 0.95: | |
break | |
return res | |
tokenizer = load_tokenizer() | |
model = load_model() | |
st.markdown("# Scientific paper classificator") | |
st.markdown( | |
"Fill in paper summary and / or title below:", | |
unsafe_allow_html=False | |
) | |
paper_title = st.text_area("Paper title") | |
paper_summary = st.text_area("Paper abstract") | |
if not paper_title and not paper_summary: | |
st.markdown(f"Must have non-empty title or summary") | |
else: | |
with torch.no_grad(): | |
raw_predictions = model( | |
**tokenizer( | |
[paper_title + "." + paper_summary], | |
padding=True, truncation=True, return_tensors="pt" | |
) | |
) | |
results = get_top_predictions(raw_predictions[0][0].numpy()) | |
st.markdown("The following are probabilities for paper topics:") | |
for topic, prob in sorted(results.items(), key=lambda item: item[1], reverse=True): | |
st.markdown(f"{topic}: {prob}") |