Spaces:
Sleeping
Sleeping
Upload 5 files
Browse files- Models/movies_list.pkl +3 -0
- Models/similarity.pkl +3 -0
- app.py +72 -0
- movie_helpers.py +19 -0
- requirements.txt +5 -0
Models/movies_list.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a49e245df2f07650b0636368563395731468f2fecf5711e41efcf03f7e94b992
|
3 |
+
size 3243620
|
Models/similarity.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f201811c220c7a2869c375cc3619929fe969d76795330ffd9148b12d87c0f51
|
3 |
+
size 800000163
|
app.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pickle
|
3 |
+
import requests
|
4 |
+
|
5 |
+
# Function to load movie data and similarity scores
|
6 |
+
@st.cache_data
|
7 |
+
def load_data():
|
8 |
+
movies = pickle.load(open("Models/movies_list.pkl", 'rb'))
|
9 |
+
similarity = pickle.load(open("Models/similarity.pkl", 'rb'))
|
10 |
+
return movies, similarity
|
11 |
+
|
12 |
+
# Function to fetch movie posters,
|
13 |
+
@st.cache_data
|
14 |
+
def fetch_poster(movie_id):
|
15 |
+
url = f"https://api.themoviedb.org/3/movie/{movie_id}?api_key=f99f126bfd58ba9b4aa8a3e6db301b6e&language=en-US"
|
16 |
+
data = requests.get(url).json()
|
17 |
+
poster_path = data.get('poster_path')
|
18 |
+
full_path = f"https://image.tmdb.org/t/p/w500/{poster_path}"
|
19 |
+
return full_path
|
20 |
+
|
21 |
+
# Function to recommend movies based on the similarity scores
|
22 |
+
def recommend(movie):
|
23 |
+
index = movies[movies['title'] == movie].index[0]
|
24 |
+
distances = sorted(list(enumerate(similarity[index])), reverse=True, key=lambda x: x[1])
|
25 |
+
recommended_movies = []
|
26 |
+
recommended_posters = []
|
27 |
+
for i in distances[1:6]:
|
28 |
+
movie_id = movies.iloc[i[0]].id
|
29 |
+
recommended_movies.append(movies.iloc[i[0]].title)
|
30 |
+
recommended_posters.append(fetch_poster(movie_id))
|
31 |
+
return recommended_movies, recommended_posters
|
32 |
+
|
33 |
+
# Load movies and similarity data
|
34 |
+
movies, similarity = load_data()
|
35 |
+
|
36 |
+
# Streamlit UI
|
37 |
+
st.title("Movie Recommender System")
|
38 |
+
|
39 |
+
# Dynamic movie selection with autocomplete feature
|
40 |
+
movie_list = movies['title'].values
|
41 |
+
selected_movie = st.selectbox("Type or select a movie from the dropdown", movie_list)
|
42 |
+
|
43 |
+
if st.button("Show Recommendations"):
|
44 |
+
recommended_movie_names, recommended_movie_posters = recommend(selected_movie)
|
45 |
+
|
46 |
+
# Displaying recommendations in a more visually appealing manner
|
47 |
+
cols = st.columns(5)
|
48 |
+
for i, (movie_name, movie_poster) in enumerate(zip(recommended_movie_names, recommended_movie_posters)):
|
49 |
+
with cols[i % 5]:
|
50 |
+
st.image(movie_poster, caption=movie_name, use_column_width=True)
|
51 |
+
|
52 |
+
st.markdown("""
|
53 |
+
<style>
|
54 |
+
/* Custom CSS for improving the UI/UX of the Streamlit app */
|
55 |
+
.streamlit-container {
|
56 |
+
margin-top: 20px;
|
57 |
+
}
|
58 |
+
.stButton>button {
|
59 |
+
width: 100%;
|
60 |
+
border-radius: 20px;
|
61 |
+
border: 1px solid #4CAF50;
|
62 |
+
background-color: #4CAF50;
|
63 |
+
color: white;
|
64 |
+
padding: 10px 24px;
|
65 |
+
cursor: pointer;
|
66 |
+
font-size: 18px;
|
67 |
+
}
|
68 |
+
.stButton>button:hover {
|
69 |
+
background-color: #45a049;
|
70 |
+
}
|
71 |
+
</style>
|
72 |
+
""", unsafe_allow_html=True)
|
movie_helpers.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
|
3 |
+
def fetch_poster(movie_id):
|
4 |
+
url = f"https://api.themoviedb.org/3/movie/{movie_id}?api_key=f99f126bfd58ba9b4aa8a3e6db301b6e&language=en-US"
|
5 |
+
data = requests.get(url).json()
|
6 |
+
poster_path = data['poster_path']
|
7 |
+
full_path = f"https://image.tmdb.org/t/p/w500/{poster_path}"
|
8 |
+
return full_path
|
9 |
+
|
10 |
+
def recommend(movie, movies, similarity):
|
11 |
+
index = movies[movies['title'] == movie].index[0]
|
12 |
+
distances = sorted(list(enumerate(similarity[index])), reverse=True, key=lambda x: x[1])
|
13 |
+
recommended_movies = []
|
14 |
+
recommended_posters = []
|
15 |
+
for i in distances[1:8]: # Get top 5 recommendations
|
16 |
+
movie_id = movies.iloc[i[0]].id
|
17 |
+
recommended_movies.append(movies.iloc[i[0]].title)
|
18 |
+
recommended_posters.append(fetch_poster(movie_id))
|
19 |
+
return recommended_movies, recommended_posters
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
h2o_wave
|
2 |
+
pandas
|
3 |
+
numpy
|
4 |
+
requests
|
5 |
+
gdown
|