itismouad commited on
Commit
72022b6
·
1 Parent(s): b2b64bc

fixing the retriever from pinecone

Browse files
Files changed (3) hide show
  1. app.py +9 -5
  2. chainlit.md +2 -0
  3. utils.py +2 -2
app.py CHANGED
@@ -39,17 +39,16 @@ def rename(orig_author: str):
39
  @cl.on_chat_start # marks a function that will be executed at the start of a user session
40
  async def start_chat():
41
 
42
- msg = cl.Message(content=f"Building Index...")
43
  await msg.send()
44
 
45
  # load documents from Arxiv
46
  axloader = ArxivLoader()
47
  axloader.main()
48
 
49
- # build index in Pinecone
50
  pi = PineconeIndexer()
51
  pi.load_embedder()
52
- pi.index_documents(axloader.documents)
53
  retriever=pi.get_vectorstore().as_retriever()
54
  print(pi.index.describe_index_stats())
55
 
@@ -59,7 +58,7 @@ async def start_chat():
59
  temperature=0
60
  )
61
 
62
- msg.content = f"Index built!"
63
  await msg.send()
64
 
65
  cl.user_session.set("llm", llm)
@@ -86,4 +85,9 @@ async def main(message: cl.Message):
86
 
87
  answer = retrieval_augmented_qa_chain.invoke({"question" : message.content})
88
 
89
- await cl.Message(content=answer["response"].content).send()
 
 
 
 
 
 
39
  @cl.on_chat_start # marks a function that will be executed at the start of a user session
40
  async def start_chat():
41
 
42
+ msg = cl.Message(content=f"Initializing the Application...")
43
  await msg.send()
44
 
45
  # load documents from Arxiv
46
  axloader = ArxivLoader()
47
  axloader.main()
48
 
49
+ # load embedder and the retriever
50
  pi = PineconeIndexer()
51
  pi.load_embedder()
 
52
  retriever=pi.get_vectorstore().as_retriever()
53
  print(pi.index.describe_index_stats())
54
 
 
58
  temperature=0
59
  )
60
 
61
+ msg = cl.Message(content=f"Application is ready !")
62
  await msg.send()
63
 
64
  cl.user_session.set("llm", llm)
 
85
 
86
  answer = retrieval_augmented_qa_chain.invoke({"question" : message.content})
87
 
88
+ await cl.Message(content=answer["response"].content).send()
89
+
90
+
91
+
92
+
93
+
chainlit.md CHANGED
@@ -1,3 +1,5 @@
1
  # Pythonic RAGA with LangChain & Pinecone
2
 
3
  This application leverages Chainlit, OpenAI, LangChain, Pinecone and Hugging Face to build a basic RAQA (Retrieval Augmented Question Answering) application based on a Pinecone index containing documents with arxiv papers about nuclear fission.
 
 
 
1
  # Pythonic RAGA with LangChain & Pinecone
2
 
3
  This application leverages Chainlit, OpenAI, LangChain, Pinecone and Hugging Face to build a basic RAQA (Retrieval Augmented Question Answering) application based on a Pinecone index containing documents with arxiv papers about nuclear fission.
4
+
5
+ Await for the `The application is ready !` message before starting to use the app.
utils.py CHANGED
@@ -104,10 +104,10 @@ class PineconeIndexer:
104
  metric=metric,
105
  dimension=n_dims
106
  )
 
 
107
 
108
  self.index = pinecone.Index(index_name)
109
- self.arxiv_loader = ArxivLoader()
110
-
111
 
112
  def load_embedder(self):
113
  """"""
 
104
  metric=metric,
105
  dimension=n_dims
106
  )
107
+
108
+ self.arxiv_loader = ArxivLoader()
109
 
110
  self.index = pinecone.Index(index_name)
 
 
111
 
112
  def load_embedder(self):
113
  """"""