Spaces:
Runtime error
Runtime error
ivan-savchuk
commited on
Commit
β’
b951bdb
1
Parent(s):
2992997
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import json
|
3 |
+
import time
|
4 |
+
import faiss
|
5 |
+
from sentence_transformers import SentenceTransformer
|
6 |
+
from sentence_transformers.cross_encoder import CrossEncoder
|
7 |
+
|
8 |
+
|
9 |
+
class DocumentSearch:
|
10 |
+
'''
|
11 |
+
This class is dedicated to
|
12 |
+
perform semantic document search
|
13 |
+
based on previously trained:
|
14 |
+
faiss: index
|
15 |
+
sbert: encoder
|
16 |
+
sbert: cross_encoder
|
17 |
+
'''
|
18 |
+
def __init__(self, labels_path: str, encoder_path: str,
|
19 |
+
index_path: str, cross_encoder_path: str):
|
20 |
+
# loading docs and corresponding urls
|
21 |
+
with open(labels_path, 'r') as json_file:
|
22 |
+
self.docs = json.load(json_file)
|
23 |
+
# loading sbert encoder model
|
24 |
+
self.encoder = SentenceTransformer(encoder_path)
|
25 |
+
# loading faiss index
|
26 |
+
self.index = faiss.read_index(index_path)
|
27 |
+
# loading sbert cross_encoder
|
28 |
+
self.cross_encoder = CrossEncoder(cross_encoder_path)
|
29 |
+
|
30 |
+
def search(self, query: str, k: int) -> list:
|
31 |
+
# get vector representation of text query
|
32 |
+
query_vector = self.encoder.encode([query])
|
33 |
+
# perform search via faiss FlatIP index
|
34 |
+
_, indeces = self.index.search(query_vector, k*10)
|
35 |
+
# get answers by index
|
36 |
+
answers = [self.docs[i] for i in indeces[0]]
|
37 |
+
# prepare inputs for cross encoder
|
38 |
+
model_inputs = [[query, pairs[0]] for pairs in answers]
|
39 |
+
urls = [pairs[1] for pairs in answers]
|
40 |
+
# get similarity score between query and documents
|
41 |
+
scores = self.cross_encoder.predict(model_inputs, batch_size=1)
|
42 |
+
# compose results into list of dicts
|
43 |
+
results = [{'doc': doc[1], 'url': url, 'score': score} for doc, url, score in zip(model_inputs, urls, scores)]
|
44 |
+
# return results sorteed by similarity scores
|
45 |
+
return sorted(results, key=lambda x: x['score'], reverse=True)[:k]
|
46 |
+
|
47 |
+
|
48 |
+
enc_path = "msmarco-distilbert-dot-v5-tuned-full-v1"
|
49 |
+
idx_path = "idx_vectors.index"
|
50 |
+
cross_enc_path = "cross-encoder-ms-marco-MiniLM-L-12-v2-tuned_mediqa-v1"
|
51 |
+
docs_path = "docs.json"
|
52 |
+
# get instance of DocumentSearch class
|
53 |
+
surfer = DocumentSearch(
|
54 |
+
labels_path=docs_path,
|
55 |
+
encoder_path=enc_path,
|
56 |
+
index_path=idx_path,
|
57 |
+
cross_encoder_path=cross_enc_path
|
58 |
+
)
|
59 |
+
|
60 |
+
|
61 |
+
if __name__ == "__main__":
|
62 |
+
# streamlit part starts here with title
|
63 |
+
st.title('Medical Search')
|
64 |
+
# here we have input space
|
65 |
+
query = st.text_input("Enter any query about our data",
|
66 |
+
placeholder="Type query here...")
|
67 |
+
# on submit we execute search
|
68 |
+
if(st.button("Search")):
|
69 |
+
# set start time
|
70 |
+
stt = time.time()
|
71 |
+
# retrieve top 5 documents
|
72 |
+
results = surfer.search(query, k=5)
|
73 |
+
# set endtime
|
74 |
+
ent = time.time()
|
75 |
+
# measure resulting time
|
76 |
+
elapsed_time = round(ent - stt, 2)
|
77 |
+
|
78 |
+
# define container for answers
|
79 |
+
with st.container():
|
80 |
+
# show which query was entered, and what was searching time
|
81 |
+
st.write(f"**Results Related to:** {query} ({elapsed_time} sec.)")
|
82 |
+
# then we use loop to show results
|
83 |
+
for i, answer in enumerate(results):
|
84 |
+
# answer starts with header
|
85 |
+
st.subheader(f"Answer {i+1}")
|
86 |
+
# cropped answer
|
87 |
+
doc = answer["doc"][:150] + "..."
|
88 |
+
# and url to the full answer
|
89 |
+
url = answer["url"]
|
90 |
+
# then we display it
|
91 |
+
st.markdown(f"{doc}\n[**Read More**]({url})\n")
|