IntelliLabel / app.py
ivanlau's picture
added app.py
f0726f1
raw
history blame
2.56 kB
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import neattext.functions as nfx
import re
import torch
import streamlit as st
# labels
labels = [
'bug',
'enhancement',
'question'
]
# Model path
# LOCAL
# MODEL_DIR = "./model/distil-bert-uncased-finetuned-github-issues/"
# REMOTE
MODEL_DIR = "ivanlau/distil-bert-uncased-finetuned-github-issues"
@st.cache(allow_output_mutation=True, show_spinner=False)
def load_model():
model = AutoModelForSequenceClassification.from_pretrained(MODEL_DIR)
tokenizer = AutoTokenizer.from_pretrained(MODEL_DIR)
return model, tokenizer
# Helpers
reg_obj = re.compile(r'[^\u0000-\u007F]+', re.UNICODE)
def is_english_text(text):
return (False if reg_obj.match(text) else True)
# remove the stopwords, emojis from the text and convert it into lower case
def neatify_text(text):
text = str(text).lower()
text = nfx.remove_stopwords(text)
text = nfx.remove_emojis(text)
return text
def main():
# st UI setting
st.set_page_config(
page_title="IntelliLabel",
page_icon="🏷",
layout="centered",
initial_sidebar_state="auto",
)
st.title("IntelliLabel")
st.write("IntelliLabel is a github issue classification app. It classifies issue into 3 categories (Bug, Enhancement, Question).")
# load model
with st.spinner("Downloading model (takes ~1 min)"):
model, tokenizer = load_model()
default_text = "Unable to run Speech2Text example in documentation"
text = st.text_area('Enter text here:', value=default_text)
submit = st.button('Predict 🏷')
if submit:
text = text.strip(" \n\t")
if is_english_text(text):
text = neatify_text(text)
tokenized_sentence = tokenizer(text, return_tensors='pt')
output = model(**tokenized_sentence)
predictions = torch.nn.functional.softmax(output.logits, dim=-1)
_, preds = torch.max(predictions, dim=-1)
predicted = labels[preds.item()]
predictions = predictions.tolist()[0]
c1, c2, c3 = st.columns(3)
c1.metric(label="Bug", value=round(predictions[0],3))
c2.metric(label="Enhancement", value=round(predictions[1],3))
c3.metric(label="Question", value=round(predictions[2],3))
st.info("Prediction")
st.write(predicted.capitalize())
else:
st.error(str("Please input english text."))
if __name__ == '__main__':
main()