|
import os |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import torchaudio |
|
from vocos import Vocos |
|
|
|
from f5_tts.model import CFM, UNetT, DiT |
|
from f5_tts.model.utils import ( |
|
get_tokenizer, |
|
convert_char_to_pinyin, |
|
) |
|
from f5_tts.infer.utils_infer import ( |
|
load_checkpoint, |
|
save_spectrogram, |
|
) |
|
|
|
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" |
|
|
|
|
|
|
|
|
|
target_sample_rate = 24000 |
|
n_mel_channels = 100 |
|
hop_length = 256 |
|
target_rms = 0.1 |
|
|
|
tokenizer = "pinyin" |
|
dataset_name = "Emilia_ZH_EN" |
|
|
|
|
|
|
|
|
|
seed = None |
|
|
|
exp_name = "F5TTS_Base" |
|
ckpt_step = 1200000 |
|
|
|
nfe_step = 32 |
|
cfg_strength = 2.0 |
|
ode_method = "euler" |
|
sway_sampling_coef = -1.0 |
|
speed = 1.0 |
|
|
|
if exp_name == "F5TTS_Base": |
|
model_cls = DiT |
|
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4) |
|
|
|
elif exp_name == "E2TTS_Base": |
|
model_cls = UNetT |
|
model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4) |
|
|
|
ckpt_path = f"ckpts/{exp_name}/model_{ckpt_step}.safetensors" |
|
output_dir = "tests" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
audio_to_edit = "src/f5_tts/infer/examples/basic/basic_ref_en.wav" |
|
origin_text = "Some call me nature, others call me mother nature." |
|
target_text = "Some call me optimist, others call me realist." |
|
parts_to_edit = [ |
|
[1.42, 2.44], |
|
[4.04, 4.9], |
|
] |
|
fix_duration = [ |
|
1.2, |
|
1, |
|
] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
use_ema = True |
|
|
|
if not os.path.exists(output_dir): |
|
os.makedirs(output_dir) |
|
|
|
|
|
local = False |
|
if local: |
|
vocos_local_path = "../checkpoints/charactr/vocos-mel-24khz" |
|
vocos = Vocos.from_hparams(f"{vocos_local_path}/config.yaml") |
|
state_dict = torch.load(f"{vocos_local_path}/pytorch_model.bin", weights_only=True, map_location=device) |
|
vocos.load_state_dict(state_dict) |
|
|
|
vocos.eval() |
|
else: |
|
vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz") |
|
|
|
|
|
vocab_char_map, vocab_size = get_tokenizer(dataset_name, tokenizer) |
|
|
|
|
|
model = CFM( |
|
transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels), |
|
mel_spec_kwargs=dict( |
|
target_sample_rate=target_sample_rate, |
|
n_mel_channels=n_mel_channels, |
|
hop_length=hop_length, |
|
), |
|
odeint_kwargs=dict( |
|
method=ode_method, |
|
), |
|
vocab_char_map=vocab_char_map, |
|
).to(device) |
|
|
|
model = load_checkpoint(model, ckpt_path, device, use_ema=use_ema) |
|
|
|
|
|
audio, sr = torchaudio.load(audio_to_edit) |
|
if audio.shape[0] > 1: |
|
audio = torch.mean(audio, dim=0, keepdim=True) |
|
rms = torch.sqrt(torch.mean(torch.square(audio))) |
|
if rms < target_rms: |
|
audio = audio * target_rms / rms |
|
if sr != target_sample_rate: |
|
resampler = torchaudio.transforms.Resample(sr, target_sample_rate) |
|
audio = resampler(audio) |
|
offset = 0 |
|
audio_ = torch.zeros(1, 0) |
|
edit_mask = torch.zeros(1, 0, dtype=torch.bool) |
|
for part in parts_to_edit: |
|
start, end = part |
|
part_dur = end - start if fix_duration is None else fix_duration.pop(0) |
|
part_dur = part_dur * target_sample_rate |
|
start = start * target_sample_rate |
|
audio_ = torch.cat((audio_, audio[:, round(offset) : round(start)], torch.zeros(1, round(part_dur))), dim=-1) |
|
edit_mask = torch.cat( |
|
( |
|
edit_mask, |
|
torch.ones(1, round((start - offset) / hop_length), dtype=torch.bool), |
|
torch.zeros(1, round(part_dur / hop_length), dtype=torch.bool), |
|
), |
|
dim=-1, |
|
) |
|
offset = end * target_sample_rate |
|
|
|
edit_mask = F.pad(edit_mask, (0, audio.shape[-1] // hop_length - edit_mask.shape[-1] + 1), value=True) |
|
audio = audio.to(device) |
|
edit_mask = edit_mask.to(device) |
|
|
|
|
|
text_list = [target_text] |
|
if tokenizer == "pinyin": |
|
final_text_list = convert_char_to_pinyin(text_list) |
|
else: |
|
final_text_list = [text_list] |
|
print(f"text : {text_list}") |
|
print(f"pinyin: {final_text_list}") |
|
|
|
|
|
ref_audio_len = 0 |
|
duration = audio.shape[-1] // hop_length |
|
|
|
|
|
with torch.inference_mode(): |
|
generated, trajectory = model.sample( |
|
cond=audio, |
|
text=final_text_list, |
|
duration=duration, |
|
steps=nfe_step, |
|
cfg_strength=cfg_strength, |
|
sway_sampling_coef=sway_sampling_coef, |
|
seed=seed, |
|
edit_mask=edit_mask, |
|
) |
|
print(f"Generated mel: {generated.shape}") |
|
|
|
|
|
generated = generated.to(torch.float32) |
|
generated = generated[:, ref_audio_len:, :] |
|
generated_mel_spec = generated.permute(0, 2, 1) |
|
generated_wave = vocos.decode(generated_mel_spec.cpu()) |
|
if rms < target_rms: |
|
generated_wave = generated_wave * rms / target_rms |
|
|
|
save_spectrogram(generated_mel_spec[0].cpu().numpy(), f"{output_dir}/speech_edit_out.png") |
|
torchaudio.save(f"{output_dir}/speech_edit_out.wav", generated_wave, target_sample_rate) |
|
print(f"Generated wav: {generated_wave.shape}") |
|
|