j-hartmann commited on
Commit
6a48f6a
1 Parent(s): a778510

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +116 -0
app.py ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pandas as pd
3
+ import numpy as np
4
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer
5
+
6
+
7
+ # summary function - test for single gradio function interfrace
8
+ def bulk_function(filename):
9
+ # Create class for data preparation
10
+ class SimpleDataset:
11
+ def __init__(self, tokenized_texts):
12
+ self.tokenized_texts = tokenized_texts
13
+
14
+ def __len__(self):
15
+ return len(self.tokenized_texts["input_ids"])
16
+
17
+ def __getitem__(self, idx):
18
+ return {k: v[idx] for k, v in self.tokenized_texts.items()}
19
+
20
+ # load tokenizer and model, create trainer
21
+ model_name = "j-hartmann/emotion-english-distilroberta-base"
22
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
23
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
24
+ trainer = Trainer(model=model)
25
+ print(filename, type(filename))
26
+ print(filename.name)
27
+
28
+
29
+ # check type of input file
30
+ if filename.name.split(".")[1] == "csv":
31
+ print("entered")
32
+ # read file, drop index if exists
33
+ df_input = pd.read_csv(filename.name, index_col=False)
34
+ if df_input.columns[0] == "Unnamed: 0":
35
+ df_input = df_input.drop("Unnamed: 0", axis=1)
36
+ elif filename.name.split(".")[1] == "xlsx":
37
+ df_input = pd.read_excel(filename.name, index_col=False)
38
+ # handle Unnamed
39
+ if df_input.columns[0] == "Unnamed: 0":
40
+ df_input = df_input.drop("Unnamed: 0", axis=1)
41
+ else:
42
+ return
43
+
44
+
45
+ # read csv
46
+ # even if index given, drop it
47
+ #df_input = pd.read_csv(filename.name, index_col=False)
48
+ #print("df_input", df_input)
49
+
50
+ # expect csv format to be in:
51
+ # 1: ID
52
+ # 2: Texts
53
+ # no index
54
+ # store ids in ordered list
55
+ ids = df_input[df_input.columns[0]].to_list()
56
+
57
+ # store sentences in ordered list
58
+ # expects sentences to be in second col
59
+ # of csv with two cols
60
+ lines_s = df_input[df_input.columns[1]].to_list()
61
+
62
+ # Tokenize texts and create prediction data set
63
+ tokenized_texts = tokenizer(lines_s,truncation=True,padding=True)
64
+ pred_dataset = SimpleDataset(tokenized_texts)
65
+
66
+ # Run predictions -> predict whole df
67
+ predictions = trainer.predict(pred_dataset)
68
+
69
+ # Transform predictions to labels
70
+ preds = predictions.predictions.argmax(-1)
71
+ labels = pd.Series(preds).map(model.config.id2label)
72
+ scores = (np.exp(predictions[0])/np.exp(predictions[0]).sum(-1,keepdims=True)).max(1)
73
+
74
+ # round scores
75
+ scores_rounded = [round(score, 3) for score in scores]
76
+
77
+ # scores raw
78
+ temp = (np.exp(predictions[0])/np.exp(predictions[0]).sum(-1,keepdims=True))
79
+
80
+ # container
81
+ anger = []
82
+ disgust = []
83
+ fear = []
84
+ joy = []
85
+ neutral = []
86
+ sadness = []
87
+ surprise = []
88
+
89
+ # extract scores (as many entries as exist in pred_texts)
90
+ for i in range(len(lines_s)):
91
+ anger.append(round(temp[i][0], 3))
92
+ disgust.append(round(temp[i][1], 3))
93
+ fear.append(round(temp[i][2], 3))
94
+ joy.append(round(temp[i][3], 3))
95
+ neutral.append(round(temp[i][4], 3))
96
+ sadness.append(round(temp[i][5], 3))
97
+ surprise.append(round(temp[i][6], 3))
98
+
99
+ # define df
100
+ df = pd.DataFrame(list(zip(ids,lines_s,labels,scores_rounded, anger, disgust, fear, joy, neutral, sadness, surprise)), columns=[df_input.columns[0], df_input.columns[1],'max_label','max_score', 'anger', 'disgust', 'fear', 'joy', 'neutral', 'sadness', 'surprise'])
101
+ print(df)
102
+ # save results to csv
103
+ YOUR_FILENAME = filename.name.split(".")[0] + "_emotion_predictions" + ".csv" # name your output file
104
+ df.to_csv(YOUR_FILENAME, index=False)
105
+
106
+ # return dataframe for space output
107
+ return YOUR_FILENAME
108
+
109
+ gr.Interface(bulk_function, inputs=[gr.inputs.File(file_count="single", type="file", label="Upload file", optional=False),],
110
+ outputs=[gr.outputs.File(label="Output file")],
111
+ # examples=[["YOUR_FILENAME.csv"]], # computes, doesn't export df so far
112
+ theme="huggingface",
113
+ title="Apply MindMiner to Your CSV",
114
+ description="Upload csv file with 2 columns (in order): (a) ID column, (b) text column. The script returns a new file that includes both the ID column and text column together with the mind perception predictions using MindMiner.",
115
+ allow_flagging=False,
116
+ ).launch(debug=True)